Active Filters

  • (-) PSI Authors = Grolimund, Daniel
Search Results 1 - 20 of 152

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Micro-X-ray diffraction and chemical mapping of aged interfaces between cement pastes and Opalinus Clay
Bernard, E., Jenni, A., Fisch, M., Grolimund, D., & Mäder, U. (2020). Micro-X-ray diffraction and chemical mapping of aged interfaces between cement pastes and Opalinus Clay. Applied Geochemistry, 115, 104538 (17 pp.). https://doi.org/10.1016/j.apgeochem.2020.104538
A miniaturized selective laser melting device for <em>operando</em> X-ray diffraction studies
Hocine, S., Van Petegem, S., Frommherz, U., Tinti, G., Casati, N., Grolimund, D., & Van Swygenhoven, H. (2020). A miniaturized selective laser melting device for operando X-ray diffraction studies. Additive Manufacturing, 34, 101194 (9 pp.). https://doi.org/10.1016/j.addma.2020.101194
In situ and ex situ characterization of the microstructure formation in Ni-Cr-Si alloys during rapid solidification - toward alloy design for laser additive manufacturing
Li, X., Zweiacker, K., Grolimund, D., Ferreira Sanchez, D., Spierings, A. B., Leinenbach, C., & Wegener, K. (2020). In situ and ex situ characterization of the microstructure formation in Ni-Cr-Si alloys during rapid solidification - toward alloy design for laser additive manufacturing. Materials, 13(9), 2192 (14 pp.). https://doi.org/10.3390/ma13092192
X-ray absorption linear dichroism at the Ti <em>K</em>-edge of rutile (001) TiO<sub>2</sub> single crystal
Rossi, T. C., Grolimund, D., Cannelli, O., Mancini, G. F., Bacellar, C., Kinschel, D., … Cherguia, M. (2020). X-ray absorption linear dichroism at the Ti K-edge of rutile (001) TiO2 single crystal. Journal of Synchrotron Radiation, 27, 425-435. https://doi.org/10.1107/S160057752000051X
Metaschoepite dissolution in sediment column systems—implications for uranium speciation and transport
Bower, W. R., Morris, K., Livens, F. R., Mosselmans, J. F. W., Fallon, C. M., Fuller, A. J., … Law, G. T. W. (2019). Metaschoepite dissolution in sediment column systems—implications for uranium speciation and transport. Environmental Science and Technology, 53(16), 9915-9925. https://doi.org/10.1021/acs.est.9b02292
Toward time-resolved laser T-jump/X-ray probe spectroscopy in aqueous solutions
Cannelli, O., Bacellar, C., Ingle, R. A., Bohinc, R., Kinschel, D., Bauer, B., … Chergui, M. (2019). Toward time-resolved laser T-jump/X-ray probe spectroscopy in aqueous solutions. Structural Dynamics, 6(6), 064303 (8 pp.). https://doi.org/10.1063/1.5129626
Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus <em>Rhodonia placenta</em>
Civardi, C., Grolimund, D., Schubert, M., Wick, P., & Schwarze, F. W. M. R. (2019). Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta. Environmental Science: Nano, 6(2), 425-431. https://doi.org/10.1039/C8EN01110A
Nickel poisoning of a cracking catalyst unravelled by single particle X-ray fluorescence-diffraction-absorption tomography
Gambino, M., Veselý, M., Filez, M., Oord, R., Ferreira Sanchez, D., Grolimund, D., … Weckhuysen, B. M. (2019). Nickel poisoning of a cracking catalyst unravelled by single particle X-ray fluorescence-diffraction-absorption tomography. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.201914950
Diffusion pathways of Fe<sup>2+</sup> and Fe<sup>3+</sup> during the formation of ferrian chromite: a µXANES study
Gervilla, F., Asta, M. P., Fanlo, I., Grolimund, D., Ferreira-Sánchez, D., Samson, V. A., … Sergeeva, I. (2019). Diffusion pathways of Fe2+ and Fe3+ during the formation of ferrian chromite: a µXANES study. Contributions to Mineralogy and Petrology, 174(8), 65 (16 pp.). https://doi.org/10.1007/s00410-019-1605-3
Operando X-ray diffraction during laser 3D printing
Hocine, S., Van Swygenhoven, H., Van Petegem, S., Chang, C. S. T., Maimaitiyili, T., Tinti, G., … Casati, N. (2019). Operando X-ray diffraction during laser 3D printing. Materials Today. https://doi.org/10.1016/j.mattod.2019.10.001
X-ray absorption linear dichroism at the Ti <em>K</em> edge of anatase TiO<sub>2</sub> single crystals
Rossi, T. C., Grolimund, D., Nachtegaal, M., Cannelli, O., Mancini, G. F., Bacellar, C., … Chergui, M. (2019). X-ray absorption linear dichroism at the Ti K edge of anatase TiO2 single crystals. Physical Review B, 100(24), 245207 (11 pp.). https://doi.org/10.1103/PhysRevB.100.245207
Structural characterisation and thermal stability of SnSe\GaSb stacked films
Sava, F., Borca, C. N., Galca, A. C., Socol, G., Grolimund, D., Mihai, C., & Velea, A. (2019). Structural characterisation and thermal stability of SnSe\GaSb stacked films. Philosophical Magazine, 99(1), 55-72. https://doi.org/10.1080/14786435.2018.1529442
Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials
Tsai, E. H. R., Billaud, J., F. Sanchez, D., Ihli, J., Odstrčil, M., Holler, M., … Guizar-Sicairos, M. (2019). Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials. iScience, 11, 356-365. https://doi.org/10.1016/j.isci.2018.12.028
Synthesis and characterisation of brannerite compositions (U<sub>0.9</sub>Ce<sub>0.1</sub>)<sub>1-<em>x</em></sub>M<em><sub>x</sub></em>Ti<sub>2</sub>O<sub>6</sub
Bailey, D. J., Stennett, M. C., Ravel, B., Grolimund, D., & Hyatt, N. C. (2018). Synthesis and characterisation of brannerite compositions (U0.9Ce0.1)1-xMxTi2O6 (M = Gd3+, Ca2+) for the immobilisation of MOX residues. RSC Advances, 8(4), 2092-2099. https://doi.org/10.1039/c7ra11742f
Fast X-Ray beam intensity stabilization for absorption spectroscopy and spectromicroscopic imaging
Birri, M., Samson, V. A., F. Sanchez, D., Grolimund, D., & Willimann, M. (2018). Fast X-Ray beam intensity stabilization for absorption spectroscopy and spectromicroscopic imaging. In V. R. W. Schaa, K. Tavakoli, & M. Tilmont (Eds.), Mechanical engineering design of synchrotron radiation equipment and instrumentation: Vol. 10. Proceedings of the 10th mechanical engineering design of synchrotron radiation equipment and instrumentation. https://doi.org/10.18429/JACoW-MEDSI2018-THPH04
Diffractive X-ray optics for synchrotrons and free-electron lasers
David, C., Rösner, B., Döring, F., Guzenko, V., Koch, F., Lebugle, M., … Schroer, C. (2018). Diffractive X-ray optics for synchrotrons and free-electron lasers. Microscopy and Microanalysis, 24(Suppl. 2), 264-267. https://doi.org/10.1017/S1431927618013673
High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses
Lebugle, M., Dworkowski, F., Pauluhn, A., Guzenko, V. A., Romano, L., Meier, N., … David, C. (2018). High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. Applied Optics, 57(30), 9032-9039. https://doi.org/10.1364/AO.57.009032
Identifying dynamic structural changes of active sites in Pt-Ni bimetallic catalysts using multimodal approaches
Liu, D., Li, Y., Kottwitz, M., Yan, B., Yao, S., Gamalski, A., … Frenkel, A. I. (2018). Identifying dynamic structural changes of active sites in Pt-Ni bimetallic catalysts using multimodal approaches. ACS Catalysis, 8(5), 4120-4131. https://doi.org/10.1021/acscatal.8b00706
Microparticle production as reference materials for particle analysis methods in safeguards
Neumeier, S., Middendorp, R., Knott, A., Dürr, M., Klinkenberg, M., Pointurier, F., … Bosbach, D. (2018). Microparticle production as reference materials for particle analysis methods in safeguards. In MRS advances: Vol. 3. Scientific basis for nuclear waste management XLI. https://doi.org/10.1557/adv.2018.166
Spatial displacement of forward-diffracted X-ray beams by perfect crystals
Rodriguez-Fernandez, A., Esposito, V., Sanchez, D. F., Finkelstein, K. D., Juranic, P., Staub, U., … Pedrini, B. (2018). Spatial displacement of forward-diffracted X-ray beams by perfect crystals. Acta Crystallographica Section A: Foundations and Advances, 74(2), 75-87. https://doi.org/10.1107/S2053273318001419
 

Pages