| Preparation of the experiment: addition of particles
Alfarra, R., Baltensperger, U., Bell, D. M., Danelli, S. G., Di Biagio, C., Doussin, J. F., … Wenger, J. (2023). Preparation of the experiment: addition of particles. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 163-206). https://doi.org/10.1007/978-3-031-22277-1_5 |
| Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol
Bell, D. M., Pospisilova, V., Lopez-Hilfiker, F., Bertrand, A., Xiao, M., Zhou, X., … Slowik, J. G. (2023). Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. Environmental Science: Atmospheres, 3(1), 115-123. https://doi.org/10.1039/d2ea00105e |
| Preparation of simulation chambers for experiments
Bell, D., Doussin, J. F., & Hohaus, T. (2023). Preparation of simulation chambers for experiments. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 113-127). https://doi.org/10.1007/978-3-031-22277-1_3 |
| Preparation of the experiment: addition and in situ production of trace gases and oxidants in the gas phase
Bell, D. M., Cirtog, M., Doussin, J. F., Fuchs, H., Illman, J., Muñoz, A., … Saathoff, H. (2023). Preparation of the experiment: addition and in situ production of trace gases and oxidants in the gas phase. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 129-161). https://doi.org/10.1007/978-3-031-22277-1_4 |
| Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol
Bell, D. M., Zhang, J., Top, J., Bogler, S., Surdu, M., Slowik, J. G., … El Haddad, I. (2023). Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol. Analytical Chemistry, 95(37), 13788-13795. https://doi.org/10.1021/acs.analchem.3c00441 |
| An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Caudillo, L., Surdu, M., Lopez, B., Wang, M., Thoma, M., Bräkling, S., … Curtius, J. (2023). An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles. Atmospheric Chemistry and Physics, 23(11), 6613-6631. https://doi.org/10.5194/acp-23-6613-2023 |
| The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
Finkenzeller, H., Iyer, S., He, X. C., Simon, M., Koenig, T. K., Lee, C. F., … Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15, 129-135. https://doi.org/10.1038/s41557-022-01067-z |
| Volatility of aerosol particles from NO<sub>3</sub> oxidation of various biogenic organic precursors
Graham, E. L., Wu, C., Bell, D. M., Bertrand, A., Haslett, S. L., Baltensperger, U., … Mohr, C. (2023). Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors. Atmospheric Chemistry and Physics, 23(13), 7347-7362. https://doi.org/10.5194/acp-23-7347-2023 |
| Time-resolved molecular characterization of secondary organic aerosol formed from OH and NO<sub>3</sub> radical initiated oxidation of a mixture of aromatic precursors
Kumar, V., Slowik, J. G., Baltensperger, U., Prevot, A. S. H., & Bell, D. M. (2023). Time-resolved molecular characterization of secondary organic aerosol formed from OH and NO3 radical initiated oxidation of a mixture of aromatic precursors. Environmental Science and Technology, 57(31), 11572-11582. https://doi.org/10.1021/acs.est.3c00225 |
| Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Schobesberger, S., D'Ambro, E. L., Vettikkat, L., Lee, B. H., Peng, Q., Bell, D. M., … Thornton, J. A. (2023). Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 16(2), 247-271. https://doi.org/10.5194/amt-16-247-2023 |
| Molecular understanding of the enhancement in organic aerosol mass at high relative humidity
Surdu, M., Lamkaddam, H., Wang, D. S., Bell, D. M., Xiao, M., Lee, C. P., … El Haddad, I. (2023). Molecular understanding of the enhancement in organic aerosol mass at high relative humidity. Environmental Science and Technology, 57(6), 2297-2309. https://doi.org/10.1021/acs.est.2c04587 |
| Observationally constrained modeling of the reactive uptake of isoprene-derived epoxydiols under elevated relative humidity and varying acidity of seed aerosol conditions
Zhang, J., Shrivastava, M., Zelenyuk, A., Zaveri, R. A., Surratt, J. D., Riva, M., … Glasius, M. (2023). Observationally constrained modeling of the reactive uptake of isoprene-derived epoxydiols under elevated relative humidity and varying acidity of seed aerosol conditions. ACS Earth and Space Chemistry, 7(4), 788-799. https://doi.org/10.1021/acsearthspacechem.2c00358 |
| Particle-phase processing of <em>α</em>-pinene NO<sub>3</sub> secondary organic aerosol in the dark
Bell, D. M., Wu, C., Bertrand, A., Graham, E., Schoonbaert, J., Giannoukos, S., … Mohr, C. (2022). Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark. Atmospheric Chemistry and Physics, 22(19), 13167-13182. https://doi.org/10.5194/acp-22-13167-2022 |
| Singlet oxygen seasonality in aqueous PM<sub>10</sub> is driven by biomass burning and anthropogenic secondary organic aerosol
Bogler, S., Daellenbach, K. R., Bell, D. M., Prévôt, A. S. H., El Haddad, I., & Borduas-Dedekind, N. (2022). Singlet oxygen seasonality in aqueous PM10 is driven by biomass burning and anthropogenic secondary organic aerosol. Environmental Science and Technology, 56(22), 15389-15397. https://doi.org/10.1021/acs.est.2c04554 |
| Pathways to highly oxidized products in the Δ3-carene + OH system
D'Ambro, E. L., Hyttinen, N., Møller, K. H., Iyer, S., Otkjær, R. V., Bell, D. M., … Kurtén, T. (2022). Pathways to highly oxidized products in the Δ3-carene + OH system. Environmental Science and Technology, 56(4), 2213-2224. https://doi.org/10.1021/acs.est.1c06949 |
| Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site
Fast, J. D., Bell, D. M., Kulkarni, G., Liu, J., Mei, F., Saliba, G., … Zelenyuk, A. (2022). Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site. Atmospheric Chemistry and Physics, 22(17), 11217-11238. https://doi.org/10.5194/acp-22-11217-2022 |
| Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry
Kumar, V., Giannoukos, S., Haslett, S. L., Tong, Y., Singh, A., Bertrand, A., … Slowik, J. G. (2022). Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry. Atmospheric Chemistry and Physics, 22(11), 7739-7761. https://doi.org/10.5194/acp-22-7739-2022 |
| High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF)
Lee, C. P., Surdu, M., Bell, D. M., Dommen, J., Xiao, M., Zhou, X., … El Haddad, I. (2022). High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF). Atmospheric Measurement Techniques, 15(12), 3747-3760. https://doi.org/10.5194/amt-15-3747-2022 |
| Monoterpene photooxidation in a continuous-flow chamber: SOA yields and impacts of oxidants, NO<em><sub>x</sub></em>, and VOC precursors
Liu, J., D'Ambro, E. L., Lee, B. H., Schobesberger, S., Bell, D. M., Zaveri, R. A., … Shilling, J. E. (2022). Monoterpene photooxidation in a continuous-flow chamber: SOA yields and impacts of oxidants, NOx, and VOC precursors. Environmental Science and Technology, 56(17), 12066-12076. https://doi.org/10.1021/acs.est.2c02630 |
| Survival of newly formed particles in haze conditions
Marten, R., Xiao, M., Rörup, B., Wang, M., Kong, W., He, X. C., … El Haddad, I. (2022). Survival of newly formed particles in haze conditions. Environmental Science: Atmospheres, 2(3), 491-499. https://doi.org/10.1039/d2ea00007e |