Active Filters

  • (-) PSI Authors = Cheptiakov, Denis
  • (-) Beamlines ≠ GPD
Search Results 1 - 20 of 199

Pages

  • RSS Feed
Select Page
Influence of Dy<sup>3+</sup> environment on magnetic anisotropy and magnetocaloric effect in Dy<sub>3</sub><em>B</em><sub>2</sub><em>C</em><sub>3</sub>O<sub>12</sub> (<em>B </em>= In, Sc, Te; C = Ga, Al, Li) garnets
Damay, F., Petit, S., Sheptyakov, D., Colin, C. V., Suard, E., Rols, S., … Decorse, C. (2024). Influence of Dy3+ environment on magnetic anisotropy and magnetocaloric effect in Dy3B2C3O12 (B = In, Sc, Te; C = Ga, Al, Li) garnets. Physical Review B, 109(1), 014419 (12 pp.). https://doi.org/10.1103/PhysRevB.109.014419
Cobalt-free layered perovskites RBaCuFeO<sub>5+δ</sub> (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction
Marelli, E., Lyu, J., Morin, M., Leménager, M., Shang, T., Yüzbasi, N. S., … Medarde, M. (2024). Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction. EES Catalysis, 1(2), 335-350. https://doi.org/10.1039/D3EY00142C
High-temperature transport properties of entropy-stabilized pyrochlores
Miruszewski, T., Vayer, F., Jaworski, D., Bérardan, D., Decorse, C., Bochentyn, B., … Dragoe, N. (2024). High-temperature transport properties of entropy-stabilized pyrochlores. Journal of Applied Physics, 135(8), 085112 (11 pp.). https://doi.org/10.1063/5.0180991
The magnetic properties of MAl<sub>4</sub>(OH)<sub>12</sub>SO<sub>4</sub>·3H<sub>2</sub>O with M = Co<sup>2+</sup>, Ni<sup>2+</sup>, and Cu<sup>2+</sup> determined by a combined experimental and computational approach
Andersen, A. B. A., Christiansen, R. T., Holm-Janas, S., Manvell, A. S., Pedersen, K. S., Sheptyakov, D., … Nielsen, U. G. (2023). The magnetic properties of MAl4(OH)12SO4·3H2O with M = Co2+, Ni2+, and Cu2+ determined by a combined experimental and computational approach. Physical Chemistry Chemical Physics, 25(4), 3309-3322. https://doi.org/10.1039/d2cp05362d
Crystal structure of and chemical bonding in MoNi<sub>4</sub>
Armbrüster, M., Rößner, L., Prots, Y., Akselrud, L., König, M., Sheptyakov, D., & Grin, Y. (2023). Crystal structure of and chemical bonding in MoNi4. Zeitschrift für Anorganische und Allgemeine Chemie, 649(23), e202300145 (8 pp.). https://doi.org/10.1002/zaac.202300145
Structural evolution of air-exposed layered oxide cathodes for sodium-ion batteries: an example of Ni-doped Na<sub>x</sub>MnO<sub>2</sub>
Brugnetti, G., Triolo, C., Massaro, A., Ostroman, I., Pianta, N., Ferrara, C., … Ruffo, R. (2023). Structural evolution of air-exposed layered oxide cathodes for sodium-ion batteries: an example of Ni-doped NaxMnO2. Chemistry of Materials, 35(20), 8440-8454. https://doi.org/10.1021/acs.chemmater.3c01196
Incommensurate magnetic structure of CrAs at low temperatures and high pressures
Eich, A., Grzechnik, A., Su, Y., Ouladdiaf, B., Sheptyakov, D., Wolf, T., … Friese, K. (2023). Incommensurate magnetic structure of CrAs at low temperatures and high pressures. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 79, 473-481. https://doi.org/10.1107/S205252062300817X
In situ neutron diffraction of Zn-MOF-74 reveals nanoconfinement-induced effects on adsorbed propene
Gäumann, P., Ferri, D., Sheptyakov, D., van Bokhoven, J. A., Rzepka, P., & Ranocchiari, M. (2023). In situ neutron diffraction of Zn-MOF-74 reveals nanoconfinement-induced effects on adsorbed propene. Journal of Physical Chemistry C, 127(33), 16636-16644. https://doi.org/10.1021/acs.jpcc.3c03225
Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics
Han, S., Dai, S., Ma, J., Ren, Q., Hu, C., Gao, Z., … Zhu, T. (2023). Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nature Physics, 19, 1649-1657. https://doi.org/10.1038/s41567-023-02188-z
High-entropy oxides in the mullite-type structure
Kirsch, A., Bøjesen, E. D., Lefeld, N., Larsen, R., Mathiesen, J. K., Skjærvø, S. L., … Jensen, K. M. Ø. (2023). High-entropy oxides in the mullite-type structure. Chemistry of Materials, 35(20), 8664-8674. https://doi.org/10.1021/acs.chemmater.3c01830
Highly reversible Ti/Sn oxide nanocomposite electrodes for lithium ion batteries obtained by oxidation of Ti<sub>3</sub>Al<sub>(1-x)</sub>Sn<sub>x</sub>C<sub>2</sub> phases
Ostroman, I., Ferrara, C., Marchionna, S., Gentile, A., Vallana, N., Sheptyakov, D., … Ruffo, R. (2023). Highly reversible Ti/Sn oxide nanocomposite electrodes for lithium ion batteries obtained by oxidation of Ti3Al(1-x)SnxC2 phases. Small Methods, 7(10), 2300503 (15 pp.). https://doi.org/10.1002/smtd.202300503
Type-II antiferromagnetic ordering in the double perovskite oxide Sr<sub>2</sub>NiWO<sub>6</sub>
Su, C., Zeng, X. T., Sun, K., Sheptyakov, D., Chen, Z., Sheng, X. L., … Jin, W. (2023). Type-II antiferromagnetic ordering in the double perovskite oxide Sr2NiWO6. Physical Review B, 108(5), 054416 (10 pp.). https://doi.org/10.1103/PhysRevB.108.054416
Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si-Gr 5 Ah pouch cells
Visti Graae, K., Li, X., Risskov Sørensen, D., Ayerbe, E., Boyano, I., Sheptyakov, D., … Norby, P. (2023). Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si-Gr 5 Ah pouch cells. Journal of Power Sources, 570, 232993 (12 pp.). https://doi.org/10.1016/j.jpowsour.2023.232993
Dynamically disordered hydrogen bonds in the hureaulite-type phosphatic oxyhydroxide Mn<sub>5</sub>[(PO<sub>4</sub>)<sub>2</sub>(PO<sub>3</sub>(OH))<sub>2</sub>](HOH)<sub>4</sub>
Hartl, A., Jurányi, F., Krack, M., Lunkenheimer, P., Schulz, A., Sheptyakov, D., … Park, S. H. (2022). Dynamically disordered hydrogen bonds in the hureaulite-type phosphatic oxyhydroxide Mn5[(PO4)2(PO3(OH))2](HOH)4. Journal of Chemical Physics, 156(9), 094502 (18 pp.). https://doi.org/10.1063/5.0083856
Aliovalent anion substitution as a design concept for heteroanionic Ruddlesden-Popper hydrides
Zapp, N., Oehler, F., Bertmer, M., Auer, H., Sheptyakov, D., Ritter, C., & Kohlmann, H. (2022). Aliovalent anion substitution as a design concept for heteroanionic Ruddlesden-Popper hydrides. Chemical Communications, 58(93), 12971-12974. https://doi.org/10.1039/d2cc04356d
Magnetic order in the quasi-one-dimensional Ising system RbCoCl<sub>3</sub>
Hänni, N. P., Sheptyakov, D., Mena, M., Hirtenlechner, E., Keller, L., Stuhr, U., … Krämer, K. W. (2021). Magnetic order in the quasi-one-dimensional Ising system RbCoCl3. Physical Review B, 103(9), 094424 (13 pp.). https://doi.org/10.1103/PhysRevB.103.094424
Hydrothermal microwave-assisted synthesis of Na<sub>3+<em>x</em></sub>V<sub>2-<em>y</em></sub>Mn<em><sub>y</sub></em>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> solid solutions as potential positive electrodes for Na-ion batteries
Iarchuk, A. R., Sheptyakov, D. V., & Abakumov, A. M. (2021). Hydrothermal microwave-assisted synthesis of Na3+xV2-yMny(PO4)2F3 solid solutions as potential positive electrodes for Na-ion batteries. ACS Applied Energy Materials, 4(5), 5007-5014. https://doi.org/10.1021/acsaem.1c00579
Crystal and magnetic structure transitions in BiMnO<sub>3+<em>δ</em></sub> ceramics driven by cation vacancies and temperature
Karpinsky, D. V., Silibin, M. V., Zhaludkevich, D. V., Latushka, S. I., Sikolenko, V. V., Többens, D. M., … Belik, A. A. (2021). Crystal and magnetic structure transitions in BiMnO3+δ ceramics driven by cation vacancies and temperature. Materials, 14(19), 5805 (9 pp.). https://doi.org/10.3390/ma14195805
Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo<sub>2</sub>O<sub>5+δ</sub>
Marelli, E., Gazquez, J., Poghosyan, E., Müller, E., Gawryluk, D. J., Pomjakushina, E., … Fabbri, E. (2021). Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo2O5+δ. Angewandte Chemie International Edition, 60(26), 14609-14619. https://doi.org/10.1002/anie.202103151
Structural investigation into magnetic spin orders of a manganese phosphatic oxyhydroxide, Mn<sub>5</sub>[(PO<sub>4</sub>)<sub>2</sub>(PO<sub>3</sub>(OH))<sub>2</sub>](HOH)<sub>4</sub>
Park, S., Hartl, A., Sheptyakov, D., Hoelzel, M., & Arauzo, A. (2021). Structural investigation into magnetic spin orders of a manganese phosphatic oxyhydroxide, Mn5[(PO4)2(PO3(OH))2](HOH)4. Symmetry, 13(9), 1688 (18 pp.). https://doi.org/10.3390/sym13091688
 

Pages