Active Filters

  • (-) PSI Authors = van Genderen, Eric
  • (-) Keywords ≠ malaria
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Machine learning for classifying narrow-beam electron diffraction data
Matinyan, S., Demir, B., Filipcik, P., Abrahams, J. P., & van Genderen, E. (2023). Machine learning for classifying narrow-beam electron diffraction data. Acta Crystallographica Section A: Foundations and Advances, 79, 360-368. https://doi.org/10.1107/S2053273323004680
Electron detection with CdTe and GaAs sensors using the charge integrating hybrid pixel detector JUNGFRAU
Fröjdh, E., Abrahams, J. P., Andrä, M., Barten, R., Bergamaschi, A., Brückner, M., … Zhang, J. (2022). Electron detection with CdTe and GaAs sensors using the charge integrating hybrid pixel detector JUNGFRAU. Journal of Instrumentation, 17, C01020 (12 pp.). https://doi.org/10.1088/1748-0221/17/01/C01020
Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals
Blum, T. B., Housset, D., Clabbers, M. T. B., van Genderen, E., Bacia-Verloop, M., Zander, U., … Abrahams, J. P. (2021). Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallographica Section D: Structural Biology, 77, 75-85. https://doi.org/10.1107/S2059798320014540
Shape-shifting peptide nanomaterials: surface asymmetry enables pH-dependent formation and interconversion of collagen tubes and sheets
Merg, A. D., Touponse, G., van Genderen, E., Blum, T. B., Zuo, X., Bazrafshan, A., … Conticello, V. P. (2020). Shape-shifting peptide nanomaterials: surface asymmetry enables pH-dependent formation and interconversion of collagen tubes and sheets. Journal of the American Chemical Society, 142(47), 19956-19968. https://doi.org/10.1021/jacs.0c08174
Sub-pixel electron detection using a convolutional neural network
van Schayck, J. P., van Genderen, E., Maddox, E., Roussel, L., Boulanger, H., Fröjdh, E., … Ravelli, R. B. G. (2020). Sub-pixel electron detection using a convolutional neural network. Ultramicroscopy, 218, 113091 (10 pp.). https://doi.org/10.1016/j.ultramic.2020.113091
Reducing dynamical electron scattering reveals hydrogen atoms
Clabbers, M. T. B., Gruene, T., van Genderen, E., & Abrahams, J. P. (2019). Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallographica Section A: Foundations and Advances, 75(1), 82-93. https://doi.org/10.1107/S2053273318013918
Design guidelines for an electron diffractometer for structural chemistry and structural biology
Heidler, J., Pantelic, R., Wennmacher, J. T. C., Zaubitzer, C., Fecteau-Lefebvre, A., Goldie, K. N., … Gruene, T. (2019). Design guidelines for an electron diffractometer for structural chemistry and structural biology. Acta Crystallographica Section D: Structural Biology, 75(5), 458-466. https://doi.org/10.1107/S2059798319003942
2D crystal engineering of nanosheets assembled from helical peptide building blocks
Merg, A. D., Touponse, G., van Genderen, E., Zuo, X., Bazrafshan, A., Blum, T., … Conticello, V. P. (2019). 2D crystal engineering of nanosheets assembled from helical peptide building blocks. Angewandte Chemie International Edition, 58(38), 13507-13512. https://doi.org/10.1002/anie.201906214
Seeded heteroepitaxial growth of crystallizable collagen triple helices: engineering multifunctional two-dimensional core-shell nanostructures
Merg, A. D., van Genderen, E., Bazrafshan, A., Su, H., Zuo, X., Touponse, G., … Conticello, V. P. (2019). Seeded heteroepitaxial growth of crystallizable collagen triple helices: engineering multifunctional two-dimensional core-shell nanostructures. Journal of the American Chemical Society, 141(51), 20107-20117. https://doi.org/10.1021/jacs.9b09335
Supramolecular architectures of molecularly thin yet robust free-standing layers
Moradi, M., Opara, N. L., Tulli, L. G., Wäckerlin, C., Dalgarno, S. J., Teat, S. J., … Shahgaldian, P. (2019). Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 5(2), eaav4489 (7 pp.). https://doi.org/10.1126/sciadv.aav4489
Characterization at the level of individual crystals: single-crystal MFI type zeolite grains
Gruene, T., Li, T., van Genderen, E., Pinar, A. B., & van Bokhoven, J. A. (2018). Characterization at the level of individual crystals: single-crystal MFI type zeolite grains. Chemistry: A European Journal, 24(10), 2384-2388. https://doi.org/10.1002/chem.201704213
Rapid structure determination of microcrystalline molecular compounds using electron diffraction
Gruene, T., Wennmacher, J. T. C., Zaubitzer, C., Holstein, J. J., Heidler, J., Fecteau-Lefebvre, A., … Pantelic, R. (2018). Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angewandte Chemie International Edition, 57(50), 16313-16317. https://doi.org/10.1002/anie.201811318
Electron crystallography with the EIGER detector
Tinti, G., Fröjdh, E., van Genderen, E., Gruene, T., Schmitt, B., de Winter, D. A. M., … Abrahams, J. P. (2018). Electron crystallography with the EIGER detector. IUCrJ, 5(2), 190-199. https://doi.org/10.1107/S2052252518000945
Protein structure determination by electron diffraction using a single three-dimensional nanocrystal
Clabbers, M. T. B., van Genderen, E., Wan, W., Wiegers, E. L., Gruene, T., & Abrahams, J. P. (2017). Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallographica Section D: Structural Biology, 73(9), 738-748. https://doi.org/10.1107/S2059798317010348