| Water management in zero-gap CO<sub>2</sub> electrolyzer with forward bias bipolar membranes
Dessiex, M., Fischer, R., Weng, T. W., Marone, F., Binder, B., Lunati, I., … Büchi, F. N. (2025). Water management in zero-gap CO2 electrolyzer with forward bias bipolar membranes. Journal of the Electrochemical Society, 172(5), 054504 (11 pp.). https://doi.org/10.1149/1945-7111/add181 |
| Guided water percolation in 3D-printed gas diffusion layers for polymer electrolyte fuel cells
Dörenkamp, T., Zaccarelli, A., Büchi, F. N., Schmidt, T. J., & Eller, J. (2025). Guided water percolation in 3D-printed gas diffusion layers for polymer electrolyte fuel cells. ACS Applied Materials and Interfaces, 17(16), 23959 (13 pp.). https://doi.org/10.1021/acsami.5c00770 |
| Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges
Aliyah, K., Appel, C., Lazaridis, T., Prehal, C., Ammann, M., Xu, L., … Eller, J. (2024). Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges. ACS Applied Materials and Interfaces, 16, 25938-25952. https://doi.org/10.1021/acsami.3c11173 |
| Exploring chances and limitations of high resolution 3D-printing for guided water percolation in gas diffusion layers of polymer electrolyte fuel cells
Dörenkamp, T., Büchi, F. N., Schmidt, T. J., & Eller, J. (2024). Exploring chances and limitations of high resolution 3D-printing for guided water percolation in gas diffusion layers of polymer electrolyte fuel cells. InterPore Journal, 1(3), IPJ271124 (13 pp.). https://doi.org/10.69631/ipj.v1i3nr43 |
| Investigation of dynamic water cluster and droplet interactions in polymer electrolyte fuel cells using operando X-ray tomographic microscopy
Dörenkamp, T., Sabharwal, M., Marone, F., Büchi, F. N., Schmidt, T. J., & Eller, J. (2024). Investigation of dynamic water cluster and droplet interactions in polymer electrolyte fuel cells using operando X-ray tomographic microscopy. Journal of the Electrochemical Society, 171(9), 094505 (9 pp.). https://doi.org/10.1149/1945-7111/ad749f |
| Gas-induced structural damages in forward-bias bipolar membrane CO<sub>2</sub> electrolysis studied by fast X-ray tomography
Fischer, R., Dessiex, M. A., Marone, F., & Büchi, F. N. (2024). Gas-induced structural damages in forward-bias bipolar membrane CO2 electrolysis studied by fast X-ray tomography. ACS Applied Energy Materials, 7(9), 3590-3601. https://doi.org/10.1021/acsaem.3c02882 |
| Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis
Schuler, T., Weber, C. C., Wrubel, J. A., Gubler, L., Pivovar, B., Büchi, F. N., & Bender, G. (2024). Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis. Advanced Energy Materials, 14(7), 2302786 (12 pp.). https://doi.org/10.1002/aenm.202302786 |
| Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis
Weber, C. C., De Angelis, S., Meinert, R., Appel, C., Holler, M., Guizar-Sicairos, M., … Büchi, F. N. (2024). Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. EES Catalysis, 2(2), 585-602. https://doi.org/10.1039/d3ey00279a |
| Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering
Aliyah, K., Prehal, C., Diercks, J. S., Diklić, N., Xu, L., Ünsal, S., … Eller, J. (2023). Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering. ACS Applied Materials and Interfaces, 15(22), 26538-26553. https://doi.org/10.1021/acsami.3c00420 |
| Analysis of the MPL/GDL interface: impact of MPL intrusion into the GDL substrate
Berger, A., Chen, Y. C., Gatzemeier, J., Schmidt, T. J., Büchi, F. N., & Gasteiger, H. A. (2023). Analysis of the MPL/GDL interface: impact of MPL intrusion into the GDL substrate. Journal of the Electrochemical Society, 170(9), 094509 (20 pp.). https://doi.org/10.1149/1945-7111/acfa26 |
| On the water transport mechanism through the microporous layers of <em>operando </em>polymer electrolyte fuel cells probed directly by X-ray tomographic microscopy
Chen, Y. C., Dörenkamp, T., Csoklich, C., Berger, A., Marone, F., Eller, J., … Büchi, F. N. (2023). On the water transport mechanism through the microporous layers of operando polymer electrolyte fuel cells probed directly by X-ray tomographic microscopy. Energy Advances, 2(9), 1447-1463. https://doi.org/10.1039/d3ya00189j |
| Understanding the microstructure of a core-shell anode catalyst layer for polymer electrolyte water electrolysis
De Angelis, S., Schuler, T., Sabharwal, M., Holler, M., Guizar-Sicairos, M., Müller, E., & Büchi, F. N. (2023). Understanding the microstructure of a core-shell anode catalyst layer for polymer electrolyte water electrolysis. Scientific Reports, 13(1), 4280 (11 pp.). https://doi.org/10.1038/s41598-023-30960-x |
| Evaporative cooling for polymer electrolyte fuel cells - an operando analysis at technical single cell level
Striednig, M., Mularczyk, A., Liu, W., Scheuble, D., Cochet, M., Boillat, P., … Büchi, F. N. (2023). Evaporative cooling for polymer electrolyte fuel cells - an operando analysis at technical single cell level. Journal of Power Sources, 556, 232419 (10 pp.). https://doi.org/10.1016/j.jpowsour.2022.232419 |
| How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis
Weber, C. C., Wrubel, J. A., Gubler, L., Bender, G., De Angelis, S., & Büchi, F. N. (2023). How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Applied Materials and Interfaces, 15(29), 34750-34763. https://doi.org/10.1021/acsami.3c04151 |
| On the role of pore constrictions in gas diffusion electrodes
Bozzetti, M., Berger, A., Girod, R., Chen, Y. C., Büchi, F. N., Gasteiger, H. A., & Tileli, V. (2022). On the role of pore constrictions in gas diffusion electrodes. Chemical Communications, 58(63), 8854-8857. https://doi.org/10.1039/d2cc02844a |
| Determination of the porosity and its heterogeneity of fuel cell microporous layers by X-ray tomographic microscopy
Chen, Y. C., Karageorgiou, C., Eller, J., Schmidt, T. J., & Büchi, F. N. (2022). Determination of the porosity and its heterogeneity of fuel cell microporous layers by X-ray tomographic microscopy. Journal of Power Sources, 539, 231612 (14 pp.). https://doi.org/10.1016/j.jpowsour.2022.231612 |
| Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells?
Csoklich, C., Sabharwal, M., Schmidt, T. J., & Büchi, F. N. (2022). Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells? Journal of Power Sources, 540, 231539 (11 pp.). https://doi.org/10.1016/j.jpowsour.2022.231539 |
| High performance gas diffusion layers with added deterministic structures
Csoklich, C., Schmidt, T. J., & Büchi, F. N. (2022). High performance gas diffusion layers with added deterministic structures. Energy and Environmental Science, 15(3), 1293-1306. https://doi.org/10.1039/d1ee03246a |
| Polymer electrolyte membrane electrolyzer and fuel cell system characterization for power system frequency control
Peter, C., Vrettos, E., & Büchi, F. N. (2022). Polymer electrolyte membrane electrolyzer and fuel cell system characterization for power system frequency control. International Journal of Electrical Power and Energy Systems, 141, 108121 (10 pp.). https://doi.org/10.1016/j.ijepes.2022.108121 |
| A model based investigation of evaporative cooling for polymer electrolyte fuel cells - stack level analysis
Striednig, M., Cochet, M., Boillat, P., Schmidt, T. J., & Büchi, F. N. (2022). A model based investigation of evaporative cooling for polymer electrolyte fuel cells - stack level analysis. Journal of Power Sources, 517, 230706 (11 pp.). https://doi.org/10.1016/j.jpowsour.2021.230706 |