Active Filters

  • (-) PSI Authors = Schertler, Gebhard
Search Results 1 - 20 of 57
Select Page
The two-photon reversible reaction of the bistable jumping spider rhodopsin-1
Ehrenberg, D., Varma, N., Deupi, X., Koyanagi, M., Terakita, A., Schertler, G. F. X., … Lesca, E. (2019). The two-photon reversible reaction of the bistable jumping spider rhodopsin-1. Biophysical Journal, 116(7), 1248-1258. https://doi.org/10.1016/j.bpj.2019.02.025
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin
Haider, R. S., Wilhelm, F., Rizk, A., Mutt, E., Deupi, X., Peterhans, C., … Ostermaier, M. K. (2019). Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Scientific Reports, 9(1), 439 (13 pp.). https://doi.org/10.1038/s41598-018-36881-4
Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation
Mayer, D., Damberger, F. F., Samarasimhareddy, M., Feldmueller, M., Vuckovic, Z., Flock, T., … Veprintsev, D. B. (2019). Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nature Communications, 10, 1261 (14 pp.). https://doi.org/10.1038/s41467-019-09204-y
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
Nagata, T., Koyanagi, M., Tsukamoto, H., Mutt, E., Schertler, G. F. X., Deupi, X., & Terakita, A. (2019). The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Communications Biology, 2, 180 (9 pp.). https://doi.org/10.1038/s42003-019-0409-3
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit
Tsai, C. J., Marino, J., Adaixo, R., Pamula, F., Muehle, J., Maeda, S., … Schertler, G. (2019). Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. eLife, 8, e46041 (19 pp.). https://doi.org/10.7554/eLife.46041
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR
Varma, N., Mutt, E., Mühle, J., Panneels, V., Terakita, A., Deupi, X., … Lesca, E. (2019). Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proceedings of the National Academy of Sciences of the United States of America PNAS, 116(29), 14574-14556. https://doi.org/10.1073/pnas.1902192116
Light induced charge and energy transport in nucleic acids and proteins: general discussion
Chattopadhyay, A., Cogdell, R., Crespo-Hernández, C. E., Datta, A., De, A., Haacke, S., … Watts, A. (2018). Light induced charge and energy transport in nucleic acids and proteins: general discussion. Faraday Discussions, 207, 153-180. https://doi.org/10.1039/c8fd90004c
Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish
Gerrard, E., Mutt, E., Nagata, T., Koyanagi, M., Flock, T., Lesca, E., … Lucas, R. J. (2018). Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish. Proceedings of the National Academy of Sciences of the United States of America PNAS, 115(24), 6201-6206. https://doi.org/10.1073/pnas.1721333115
Structure of the μ–opioid receptor–G<sub>i</sub> protein complex
Koehl, A., Hu, H., Maeda, S., Zhang, Y., Qu, Q., Paggi, J. M., … Kobilka, B. K. (2018). Structure of the μ–opioid receptor–Gi protein complex. Nature, 558(7711), 547-552. https://doi.org/10.1038/s41586-018-0219-7
The role of water molecules in phototransduction of retinal proteins and G protein-coupled receptors
Lesca, E., Panneels, V., & Schertler, G. F. X. (2018). The role of water molecules in phototransduction of retinal proteins and G protein-coupled receptors. Faraday Discussions, 207, 27-37. https://doi.org/10.1039/c7fd00207f
Development of an antibody fragment that stabilizes GPCR/G-protein complexes
Maeda, S., Koehl, A., Matile, H., Hu, H., Hilger, D., Schertler, G. F. X., … Kobilka, B. K. (2018). Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nature Communications, 9(1), 3712 (9 pp.). https://doi.org/10.1038/s41467-018-06002-w
Ligand channel in pharmacologically stabilized rhodopsin
Mattle, D., Kuhn, B., Aebi, J., Bedoucha, M., Kekilli, D., Grozinger, N., … Dawson, R. J. P. (2018). Ligand channel in pharmacologically stabilized rhodopsin. Proceedings of the National Academy of Sciences of the United States of America PNAS, 115(14), 3640-3645. https://doi.org/10.1073/pnas.1718084115
Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
Nogly, P., Weinert, T., James, D., Carbajo, S., Ozerov, D., Furrer, A., … Standfuss, J. (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science, 361(6398), eaat0094 (7 pp.). https://doi.org/10.1126/science.aat0094
Crystal structure of rhodopsin in complex with a mini-G<sub>o</sub> sheds light on the principles of G protein selectivity
Tsai, C. J., Pamula, F., Nehmé, R., Mühle, J., Weinert, T., Flock, T., … Schertler, G. F. X. (2018). Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Science Advances, 4(9), aat7052 (9 pp.). https://doi.org/10.1126/sciadv.aat7052
Perspective: opportunities for ultrafast science at SwissFEL
Abela, R., Beaud, P., van Bokhoven, J. A., Chergui, M., Feurer, T., Haase, J., … Patthey, L. (2017). Perspective: opportunities for ultrafast science at SwissFEL. Structural Dynamics, 4(6), 61602 (25 pp.). https://doi.org/10.1063/1.4997222
Comprehensive analysis of the role of arrestin residues in receptor binding
Haider, R. S., Rizk, A., Schertler, G. F. X., & Ostermaier, M. K. (2017). Comprehensive analysis of the role of arrestin residues in receptor binding. In V. V. Gurevich (Ed.), The structural basis of arrestin functions. https://doi.org/10.1007/978-3-319-57553-7_7
Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons
Weinert, T., Olieric, N., Cheng, R., Brünle, S., James, D., Ozerov, D., … Standfuss, J. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542 (11 pp.). https://doi.org/10.1038/s41467-017-00630-4
Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis
Chakrabarti, K. S., Agafonov, R. V., Pontiggia, F., Otten, R., Higgins, M. K., Schertler, G. F. X., … Kern, D. (2016). Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis. Cell Reports, 14(1), 32-42. https://doi.org/10.1016/j.celrep.2015.12.010
Backbone NMR reveals allosteric signal transduction networks in the β<sub>1</sub>-adrenergic receptor
Isogai, S., Deupi, X., Opitz, C., Heydenreich, F. M., Tsai, C. J., Brueckner, F., … Grzesiek, S. (2016). Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature, 530(7589), 237-241. https://doi.org/10.1038/nature16577
A three-dimensional movie of structural changes in bacteriorhodopsin
Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., … Iwata, S. (2016). A three-dimensional movie of structural changes in bacteriorhodopsin. Science, 354(6319), 1552-1557. https://doi.org/10.1126/science.aaH3497