Active Filters

  • (-) PSI Authors = Capitani, Guido
  • (-) Publication Status = Published
Search Results 1 - 20 of 44
Select Page
Stochastic chain termination in bacterial pilus assembly
Giese, C., Puorger, C., Ignatov, O., Bečárová, Z., Weber, M. E., Schärer, M. A., … Glockshuber, R. (2023). Stochastic chain termination in bacterial pilus assembly. Nature Communications, 14(1), 7718 (21 pp.). https://doi.org/10.1038/s41467-023-43449-y
Structure–function relationship of a novel fucoside-binding fruiting body lectin from <em>Coprinopsis cinerea</em> exhibiting nematotoxic activity
Bleuler-Martinez, S., Varrot, A., Olieric, V., Schubert, M., Vogt, E., Fetz, C., … Künzler, M. (2022). Structure–function relationship of a novel fucoside-binding fruiting body lectin from Coprinopsis cinerea exhibiting nematotoxic activity. Glycobiology, 32(7), 600-615. https://doi.org/10.1093/glycob/cwac020
Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm
Bliven, S. E., Lafita, A., Rose, P. W., Capitani, G., Prlić, A., & Bourne, P. E. (2019). Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm. PLoS Computational Biology, 15(4), e1006842 (18 pp.). https://doi.org/10.1371/journal.pcbi.1006842
Crystal structure of a heterotetrameric katanin p60:p80 complex
Faltova, L., Jiang, K., Frey, D., Wu, Y., Capitani, G., Prota, A. E., … Kammerer, R. A. (2019). Crystal structure of a heterotetrameric katanin p60:p80 complex. Structure, 27(9), 1375-1383.e3. https://doi.org/10.1016/j.str.2019.07.002
Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria
Żyła, D. S., Prota, A. E., Capitani, G., & Glockshuber, R. (2019). Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria. Journal of Biological Chemistry, 294(27), 10553-10563. https://doi.org/10.1074/jbc.RA119.008610
Automated evaluation of quaternary structures from protein crystals
Bliven, S., Lafita, A., Parker, A., Capitani, G., & Duarte, J. M. (2018). Automated evaluation of quaternary structures from protein crystals. PLoS Computational Biology, 14(4), e1006104 (19 pp.). https://doi.org/10.1371/journal.pcbi.1006104
Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Tsai, C. J., Barty, A., Hunter, M. S., Zatsepin, N. A., Padeste, C., … Frank, M. (2018). Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 5(1), 103-117. https://doi.org/10.1107/S2052252517017043
Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex
Jiang, K., Faltova, L., Hua, S., Capitani, G., Prota, A. E., Landgraf, C., … Akhmanova, A. (2018). Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex. Structure, 26(3), 375-382. https://doi.org/10.1016/j.str.2017.12.017
Assessment of protein assembly prediction in CASP12
Lafita, A., Bliven, S., Kryshtafovych, A., Bertoni, M., Monastyrskyy, B., Duarte, J. M., … Capitani, G. (2018). Assessment of protein assembly prediction in CASP12. Proteins, 86(S1), 247-256. https://doi.org/10.1002/prot.25408
Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex
Jiang, K., Rezabkova, L., Hua, S., Liu, Q., Capitani, G., Altelaar, A. F. M., … Akhmanova, A. (2017). Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nature Cell Biology, 19(5), 480-492. https://doi.org/10.1038/ncb3511
Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency
Lovric, S., Goncalves, S., Gee, H. Y., Oskouian, B., Srinivas, H., Choi, W. I., … Hildebrandt, F. (2017). Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 127(3), 912-928. https://doi.org/10.1172/JCI89626
Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A
Markovic-Mueller, S., Stuttfeld, E., Asthana, M., Weinert, T., Bliven, S., Goldie, K. N., … Ballmer-Hofer, K. (2017). Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A. Structure, 25(2), 341-352. https://doi.org/10.1016/j.str.2016.12.012
Structural basis of katanin p60:p80 complex formation
Rezabkova, L., Jiang, K., Capitani, G., Prota, A. E., Akhmanova, A., Steinmetz, M. O., & Kammerer, R. A. (2017). Structural basis of katanin p60:p80 complex formation. Scientific Reports, 7, 14893 (8 pp.). https://doi.org/10.1038/s41598-017-14194-2
Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts
Capitani, G., Duarte, J. M., Baskaran, K., Bliven, S., & Somody, J. C. (2016). Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts. Bioinformatics, 32(4), 481-489. https://doi.org/10.1093/bioinformatics/btv622
Accelerating the association of the most stable protein–ligand complex by more than two orders of magnitude
Giese, C., Eras, J., Kern, A., Schärer, M. A., Capitani, G., & Glockshuber, R. (2016). Accelerating the association of the most stable protein–ligand complex by more than two orders of magnitude. Angewandte Chemie International Edition, 55(32), 9350-9355. https://doi.org/10.1002/anie.201603652
Functional roles of the hexamer organization of plant glutamate decarboxylase
Astegno, A., Capitani, G., & Dominici, P. (2015). Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochimica et Biophysica Acta: Proteins and Proteomics, 1854(9), 1229-1237. https://doi.org/10.1016/j.bbapap.2015.01.001
Structure of the BoNT/A1 - Receptor complex
Benoit, R. M., Frey, D., Wieser, M. M., Thieltges, K. M., Jaussi, R., Capitani, G., & Kammerer, R. A. (2015). Structure of the BoNT/A1 - Receptor complex. Toxicon, 107(Part A), 25-31. https://doi.org/10.1016/j.toxicon.2015.08.002
Time-resolved structural studies with serial crystallography: a new light on retinal proteins
Panneels, V., Wu, W., Tsai, C. J., Nogly, P., Rheinberger, J., Jaeger, K., … Schertler, G. (2015). Time-resolved structural studies with serial crystallography: a new light on retinal proteins. Structural Dynamics, 2(4), 041718 (8 pp.). https://doi.org/10.1063/1.4922774
The use of ene adducts to study and engineer enoyl-thioester reductases
Rosenthal, R. G., Vögeli, B., Quade, N., Capitani, G., Kiefer, P., Vorholt, J. A., … Erb, T. J. (2015). The use of ene adducts to study and engineer enoyl-thioester reductases. Nature Chemical Biology, 11(6), 398-400. https://doi.org/10.1038/nchembio.1794
How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation
Abicht, H. K., Schärer, M. A., Quade, N., Ledermann, R., Mohorko, E., Capitani, G., … Glockshuber, R. (2014). How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. Journal of Biological Chemistry, 289(47), 32431-32444. https://doi.org/10.1074/jbc.M114.607127