Active Filters

  • (-) PSI Authors = Schippers, Jacobus M.
  • (-) Journals ≠ International Journal of Modern Physics A
Search Results 1 - 20 of 70

Pages

  • RSS Feed
Select Page
A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2023). A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study. In Journal of physics: conference series: Vol. 2420. 13th international particle accelerator conference (IPAC’22) (p. 012107 (6 pp.). https://doi.org/10.1088/1742-6596/2420/1/012107
Magnetic alignment and mechanical analysis of superconducting bending section for proton therapy
Calzolaio, C., Sanfilippo, S., Schippers, J. M., & Trillaud, F. (2022). Magnetic alignment and mechanical analysis of superconducting bending section for proton therapy. IEEE Transactions on Applied Superconductivity, 32(6), 4400605 (5 pp.). https://doi.org/10.1109/TASC.2022.3157659
Ultra-high dose rate radiation production and delivery systems intended for FLASH
Farr, J., Grilj, V., Malka, V., Sudharsan, S., & Schippers, M. (2022). Ultra-high dose rate radiation production and delivery systems intended for FLASH. Medical Physics, 49(7), 4875-4911. https://doi.org/10.1002/mp.15659
Application of a scattering foil to increase beam transmission for cyclotron based proton therapy facilities
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2022). Application of a scattering foil to increase beam transmission for cyclotron based proton therapy facilities. Frontiers in Physics, 10, 919787 (9 pp.). https://doi.org/10.3389/fphy.2022.919787
Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry
Maradia, V., Giovannelli, A. C., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2022). Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry. Medical Physics, 49(4), 2183-2192. https://doi.org/10.1002/mp.15505
Development of a fourfold dielectric-filled reentrant cavity as a beam position monitor (BPM) in a proton therapy facility
Srinivasan, S., Brandenburg, S., Schippers, J. M., & Duperrex, P. A. (2022). Development of a fourfold dielectric-filled reentrant cavity as a beam position monitor (BPM) in a proton therapy facility. Journal of Instrumentation, 17(9), P09013 (25 pp.). https://doi.org/10.1088/1748-0221/17/09/P09013
A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2021). A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry. Medical Physics, 48(12), 7613-7622. https://doi.org/10.1002/mp.15278
A static beam delivery device for fast scanning proton arc-therapy
Nesteruk, K. P., Bolsi, A., Lomax, A. J., Meer, D., Van De Water, S., & Schippers, J. M. (2021). A static beam delivery device for fast scanning proton arc-therapy. Physics in Medicine and Biology, 66(5), 055018 (15 pp.). https://doi.org/10.1088/1361-6560/abe02b
Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH)
Nesteruk, K. P., Togno, M., Grossmann, M., Lomax, A. J., Weber, D. C., Schippers, J. M., … Psoroulas, S. (2021). Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Medical Physics, 48(7), 4017-4026. https://doi.org/10.1002/mp.14933
Roadmap: proton therapy physics and biology
Paganetti, H., Beltran, C., Both, S., Dong, L., Flanz, J., Furutani, K., … Lomax, T. (2021). Roadmap: proton therapy physics and biology. Physics in Medicine and Biology, 66(5), 05RM01 (61 pp.). https://doi.org/10.1088/1361-6560/abcd16
Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities
Gerlach, S., Pinto, M., Kurichiyanil, N., Grau, C., Hérault, J., Hillbrand, M., … Parodi, K. (2020). Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Physics in Medicine and Biology, 65(24), 245045 (18 pp.). https://doi.org/10.1088/1361-6560/abc832
Technical challenges for FLASH proton therapy
Jolly, S., Owen, H., Schippers, M., & Welsch, C. (2020). Technical challenges for FLASH proton therapy. Physica Medica, 78, 71-82. https://doi.org/10.1016/j.ejmp.2020.08.005
Uncertainty quantification analysis and optimization for proton therapy beam lines
Rizzoglio, V., Adelmann, A., Gerbershagen, A., Meer, D., Nesteruk, K. P., & Schippers, J. M. (2020). Uncertainty quantification analysis and optimization for proton therapy beam lines. Physica Medica, 75, 11-18. https://doi.org/10.1016/j.ejmp.2020.05.013
Beamline characterization of a dielectric-filled reentrant cavity resonator as beam current monitor for a medical cyclotron facility
Srinivasan, S., Duperrex, P. A., & Schippers, J. M. (2020). Beamline characterization of a dielectric-filled reentrant cavity resonator as beam current monitor for a medical cyclotron facility. Physica Medica, 78, 101-108. https://doi.org/10.1016/j.ejmp.2020.09.006
BDSIM simulation of the complete radionuclide production beam line from beam splitter to target station at the PSI cyclotron facility
Zhang, H., Eichler, R., Grillenberger, J., Hirzel, W., Joray, S., Kiselev, D. C., … Nevay, L. J. (2020). BDSIM simulation of the complete radionuclide production beam line from beam splitter to target station at the PSI cyclotron facility. In L. Conradie, J. Garrett De Villiers, & V. R. W. Schaa (Eds.), International conference on cyclotrons and their applications: Vol. 22. CYC2019. 22nd international conference on cyclotrons and their applications (pp. 275-278). https://doi.org/10.18429/JACoW-Cyclotrons2019-WEB04
Large energy acceptance gantry for proton therapy utilizing superconducting technology
Nesteruk, K. P., Calzolaio, C., Meer, D., Rizzoglio, V., Seidel, M., & Schippers, J. M. (2019). Large energy acceptance gantry for proton therapy utilizing superconducting technology. Physics in Medicine and Biology, 64(17), 175007 (13 pp.). https://doi.org/10.1088/1361-6560/ab2f5f
Towards FLASH proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates
van de Water, S., Safai, S., Schippers, J. M., Weber, D. C., & Lomax, A. J. (2019). Towards FLASH proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates. Acta Oncologica, 58(10), 1463-1469. https://doi.org/10.1080/0284186X.2019.1627416
Linac booster for high energy proton therapy and imaging
Degiovanni, A., Amaldi, U., Lomax, A. J., Schippers, J. M., Stingelin, L., & Bilbao de Mendizabal, J. (2018). Linac booster for high energy proton therapy and imaging. Physical Review Accelerators and Beams, 21(6), 064701 (7 pp.). https://doi.org/10.1103/PhysRevAccelBeams.21.064701
Recent advances in superconducting magnets for MRI and hadron radiotherapy: an introduction to '<em>focus on superconducting magnets for hadron therapy and MRI</em>'
Minervini, J., Parizh, M., & Schippers, M. (2018). Recent advances in superconducting magnets for MRI and hadron radiotherapy: an introduction to 'focus on superconducting magnets for hadron therapy and MRI'. Superconductor Science and Technology, 31(3), 030301 (4 pp.). https://doi.org/10.1088/1361-6668/aaa826
Can technological improvements reduce the cost of proton radiation therapy?
Schippers, J. M., Lomax, A., Garonna, A., & Parodi, K. (2018). Can technological improvements reduce the cost of proton radiation therapy? Seminars in Radiation Oncology, 28(2), 150-159. https://doi.org/10.1016/j.semradonc.2017.11.007
 

Pages