Active Filters

  • (-) PSI Authors = El Kazzi, Mario
Search Results 1 - 20 of 37
Select Page
High performance doped Li-rich Li<sub>1+x</sub>Mn<sub>2-x</sub>O<sub>4</sub> cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route
Falqueto, J. B., Clark, A. H., Štefančič, A., Smales, G. J., Vaz, C. A. F., Schuler, A. J., … El Kazzi, M. (2022). High performance doped Li-rich Li1+xMn2-xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route. ACS Applied Energy Materials, 5(7), 8357-8370. https://doi.org/10.1021/acsaem.2c00902
Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery
Surace, Y., Leanza, D., Mirolo, M., Kondracki, Ł., Vaz, C. A. F., El Kazzi, M., … Trabesinger, S. (2022). Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 44, 156-167. https://doi.org/10.1016/j.ensm.2021.10.013
Fluorinated cyclic ether co-solvents for ultra-high-voltage practical lithium-metal batteries
Zhao, Y., Zhou, T., El Kazzi, M., & Coskun, A. (2022). Fluorinated cyclic ether co-solvents for ultra-high-voltage practical lithium-metal batteries. ACS Applied Energy Materials, 5(6), 7784-7790. https://doi.org/10.1021/acsaem.2c01261
Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries
Zhao, Y., Zhou, T., Ashirov, T., Kazzi, M. E., Cancellieri, C., Jeurgens, L. P. H., … Coskun, A. (2022). Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications, 13, 2575 (9 pp.). https://doi.org/10.1038/s41467-022-29199-3
Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries
Zhou, T., Zhao, Y., El Kazzi, M., Choi, J. W., & Coskun, A. (2022). Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 61(19), e202115884 (6 pp.). https://doi.org/10.1002/anie.202115884
Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735
Instability of PVDF binder in the LiFePO&lt;sub&gt;4&lt;/sub&gt;&lt;em&gt; versus&lt;/em&gt; Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; Li‐Ion battery cell
Leanza, D., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li‐Ion battery cell. Helvetica Chimica Acta, 104(1), e2000183 (9 pp.). https://doi.org/10.1002/hlca.202000183
Unveiling the complex redox reactions of SnO&lt;sub&gt;2&lt;/sub&gt;in Li-Ion batteries using &lt;em&gt;operando&lt;/em&gt; X-ray photoelectron spectroscopy and &lt;em&gt;in situ&lt;/em&gt; X-ray absorption spectroscopy
Mirolo, M., Wu, X., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Unveiling the complex redox reactions of SnO2in Li-Ion batteries using operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. ACS Applied Materials and Interfaces, 13(2), 2547-2557. https://doi.org/10.1021/acsami.0c17936
Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries
Pham, H. Q., Nguyen, M. T., Tarik, M., El Kazzi, M., & Trabesinger, S. (2021). Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries. ChemSusChem, 14(11), 2461-2474. https://doi.org/10.1002/cssc.202100511
Reactivity and potential profile across the electrochemical LiCoO<sub>2</sub>-Li<sub>3</sub>PS<sub>4 </sub>interface probed by operando X-ray photoelectron spectroscopy
Wu, X., Mirolo, M., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy. ACS Applied Materials and Interfaces, 13(36), 42670-42681. https://doi.org/10.1021/acsami.1c09605
Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries
Zhang, L., Müller Gubler, E. A., Tai, C. W., Kondracki, Ł., Sommer, H., Novák, P., … Trabesinger, S. (2021). Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries. ACS Applied Materials and Interfaces, 14(11), 13240-13249. https://doi.org/10.1021/acsami.1c23128
Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries
Zhou, T., Zhao, Y., El Kazzi, M., Choi, J. W., & Coskun, A. (2021). Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries. ACS Energy Letters, 6(5), 1711-1718. https://doi.org/10.1021/acsenergylett.1c00274
Study of graphite cycling in sulfide solid electrolytes
Höltschi, L., Jud, F., Borca, C., Huthwelker, T., Villevieille, C., Pelé, V., … Novák, P. (2020). Study of graphite cycling in sulfide solid electrolytes. Journal of the Electrochemical Society, 167(11), 110558 (10 pp.). https://doi.org/10.1149/1945-7111/aba36f
The solid-state Li-ion conductor Li&lt;sub&gt;7&lt;/sub&gt;TaO&lt;sub&gt;6&lt;/sub&gt;: a combined computational and experimental study
Kahle, L., Cheng, X., Binninger, T., Lacey, S. D., Marcolongo, A., Zipoli, F., … Pergolesi, D. (2020). The solid-state Li-ion conductor Li7TaO6: a combined computational and experimental study. Solid State Ionics, 347, 115226 (11 pp.). https://doi.org/10.1016/j.ssi.2020.115226
Coating of NCM 851005 cathode material with Al0@Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; and subsequent treatment with anhydrous HF
Martens, A., Bolli, C., Hoffmann, A., Erk, C., Ludwig, T., El Kazzi, M., … Krossing, I. (2020). Coating of NCM 851005 cathode material with Al0@Al2O3 and subsequent treatment with anhydrous HF. Journal of the Electrochemical Society, 167(7), 070510 (10 pp.). https://doi.org/10.1149/1945-7111/ab68d0
&lt;em&gt;Post mortem&lt;/em&gt; and&lt;em&gt; operando &lt;/em&gt;XPEEM: a surface-sensitive tool for studying single particles in Li-Ion battery composite electrodes
Mirolo, M., Leanza, D., Höltschi, L., Jordy, C., Pelé, V., Novák, P., … Vaz, C. A. F. (2020). Post mortem and operando XPEEM: a surface-sensitive tool for studying single particles in Li-Ion battery composite electrodes. Analytical Chemistry, 92(4), 3023-3031. https://doi.org/10.1021/acs.analchem.9b04124
Multi-length-scale x-ray spectroscopies for determination of surface reactivity at high voltages of LiNi&lt;sub&gt;0.8&lt;/sub&gt;Co&lt;sub&gt;0.15&lt;/sub&gt;Al&lt;sub&gt;0.05&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; vs Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt
Mirolo, M., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2020). Multi-length-scale x-ray spectroscopies for determination of surface reactivity at high voltages of LiNi0.8Co0.15Al0.05O2 vs Li4Ti5O12. Journal of Chemical Physics, 152(18), 184705 (13 pp.). https://doi.org/10.1063/5.0006269
Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells
Pham, H. Q., Mirolo, M., Tarik, M., El Kazzi, M., & Trabesinger, S. (2020). Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Materials, 33, 216-229. https://doi.org/10.1016/j.ensm.2020.08.026
Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi&lt;sub&gt;0.25&lt;/sub&gt;Ti&lt;sub&gt;1.5&lt;/sub&gt; Fe&lt;sub&gt;0.5&l
Srout, M., El Kazzi, M., Ben Youcef, H., Fromm, K. M., & Saadoune, I. (2020). Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi0.25Ti1.5 Fe0.5(PO4)3. Journal of Power Sources, 461, 228114 (8 pp.). https://doi.org/10.1016/j.jpowsour.2020.228114
Nanoscale XPEEM spectromicroscopy
Vaz, C. A. F., Kleibert, A., & EL Kazzi, M. (2020). Nanoscale XPEEM spectromicroscopy. In K. D. Sattler (Ed.), 21st century nanoscience – a handbook: Vol. 3. Advanced analytic methods and instrumentation (p. 17 (21 pp.). https://doi.org/10.1201/9780429340420-17