Active Filters

  • (-) PSI Authors = Steinmetz, Michel O.
Search Results 1 - 20 of 153

Pages

  • RSS Feed
Select Page
<em>In vivo</em> photocontrol of microtubule dynamics and integrity, migration and mitosis, by the potent GFP-imaging-compatible photoswitchable reagents SBTubA4P and SBTub2M
Gao, L., Meiring, J. C. M., Varady, A., Ruider, I. E., Heise, C., Wranik, M., … Thorn-Seshold, O. (2022). In vivo photocontrol of microtubule dynamics and integrity, migration and mitosis, by the potent GFP-imaging-compatible photoswitchable reagents SBTubA4P and SBTub2M. Journal of the American Chemical Society, 144(12), 5614-5628. https://doi.org/10.1021/jacs.2c01020
Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes
Mühlethaler, T., Olieric, N., Ehrhard, V. A., Wranik, M., Standfuss, J., Sharma, A., … Steinmetz, M. O. (2022). Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes. In H. Inaba (Ed.), Methods in molecular biology: Vol. 2430. Microtubules. Methods and protocols (pp. 349-374). https://doi.org/10.1007/978-1-0716-1983-4_23
Rational design of a novel tubulin inhibitor with a unique mechanism of action
Mühlethaler, T., Milanos, L., Ortega, J. A., Blum, T. B., Gioia, D., Roy, B., … Steinmetz, M. O. (2022). Rational design of a novel tubulin inhibitor with a unique mechanism of action. Angewandte Chemie International Edition, 61(25), e202204052 (11 pp.). https://doi.org/10.1002/anie.202204052
Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents
de la Roche, N. M., Mühlethaler, T., Di Martino, R. M. C., Ortega, J. A., Gioia, D., Roy, B., … Cavalli, A. (2022). Novel fragment-derived colchicine-site binders as microtubule-destabilizing agents. European Journal of Medicinal Chemistry, 241, 114614 (12 pp.). https://doi.org/10.1016/j.ejmech.2022.114614
Inhibiting parasite proliferation using a rationally designed anti-tubulin agent
Gaillard, N., Sharma, A., Abbaali, I., Liu, T., Shilliday, F., Cook, A. D., … Steinmetz, M. O. (2021). Inhibiting parasite proliferation using a rationally designed anti-tubulin agent. EMBO Molecular Medicine, 13(11), e13818 (12 pp.). https://doi.org/10.15252/emmm.202013818
A robust, GFP-orthogonal photoswitchable inhibitor scaffold extends optical control over the microtubule cytoskeleton
Gao, L., Meiring, J. C. M., Kraus, Y., Wranik, M., Weinert, T., Pritzl, S. D., … Thorn-Seshold, O. (2021). A robust, GFP-orthogonal photoswitchable inhibitor scaffold extends optical control over the microtubule cytoskeleton. Cell Chemical Biology, 28(2), 228-241. https://doi.org/10.1016/j.chembiol.2020.11.007
Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method
Ijavi, M., Style, R. W., Emmanouilidis, L., Kumar, A., Meier, S. M., Torzynski, A. L., … Dufresne, E. R. (2021). Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 17(6), 1655-1662. https://doi.org/10.1039/d0sm01319f
Preclinical and early clinical development of PTC596, a novel small-molecule tubulin-binding agent
Jernigan, F., Branstrom, A., Baird, J. D., Cao, L., Dali, M., Furia, B., … Weetall, M. (2021). Preclinical and early clinical development of PTC596, a novel small-molecule tubulin-binding agent. Molecular Cancer Therapeutics, 20(10), 1846-1857. https://doi.org/10.1158/1535-7163.MCT-20-0774
Structure and regulation of the microtubule plus-end tracking protein Kar9
Kumar, A., Meier, S. M., Farcas, A. M., Manatschal, C., Barral, Y., & Steinmetz, M. O. (2021). Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure, 29(11), 1266-1278.e4. https://doi.org/10.1016/j.str.2021.06.012
Comprehensive analysis of binding sites in tubulin
Mühlethaler, T., Gioia, D., Prota, A. E., Sharpe, M. E., Cavalli, A., & Steinmetz, M. O. (2021). Comprehensive analysis of binding sites in tubulin. Angewandte Chemie International Edition, 60(24), 13331-13342. https://doi.org/10.1002/anie.202100273
Centriole length control
Sharma, A., Olieric, N., & Steinmetz, M. O. (2021). Centriole length control. Current Opinion in Structural Biology, 66, 89-95. https://doi.org/10.1016/j.sbi.2020.10.011
1,3-benzodioxole-modified noscapine analogues: synthesis, antiproliferative activity, and tubulin-bound structure
Yong, C., Devine, S. M., Abel, A. C., Tomlins, S. D., Muthiah, D., Gao, X., … Scammells, P. J. (2021). 1,3-benzodioxole-modified noscapine analogues: synthesis, antiproliferative activity, and tubulin-bound structure. ChemMedChem, 16(18), 2882-2894. https://doi.org/10.1002/cmdc.202100363
The mechanism of kinesin inhibition by kinesin binding protein
Atherton, J., Hummel, J. J. A., Olieric, N., Locke, J., Peña, A., Rosenfeld, S. S., … Moores, C. A. (2020). The mechanism of kinesin inhibition by kinesin binding protein. eLife, 9, e61481 (30 pp.). https://doi.org/10.7554/eLife.61481
Structural model for differential cap maturation at growing microtubule ends
Estévez-Gallego, J., Josa-Prado, F., Ku, S., Buey, R. M., Balaguer, F. A., Prota, A. E., … Oliva, M. A. (2020). Structural model for differential cap maturation at growing microtubule ends. eLife, 9, e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of &lt;em&gt;Dictyostelium discoideum&lt;/em&gt;
Fiedler, T., Fabrice, T. N., Studer, V., Vinet, A., Faltova, L., Kammerer, R. A., … Pieters, J. (2020). Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Letters, 594(13), 2116-2127. https://doi.org/10.1002/1873-3468.13787
Structural refinement of the tubulin ligand (+)-discodermolide to attenuate chemotherapy-mediated senescence
Guo, B., Rodriguez-Gabin, A., Prota, A. E., Mühlethaler, T., Zhang, N., Ye, K., … McDaid, H. M. (2020). Structural refinement of the tubulin ligand (+)-discodermolide to attenuate chemotherapy-mediated senescence. Molecular Pharmacology, 98(2), 156-167. https://doi.org/10.1124/mol.119.117457
Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent
Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., … Weissman, J. S. (2020). Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent. Molecular Cell, 79(1), 191-198.e3. https://doi.org/10.1016/j.molcel.2020.06.008
Advances in long-wavelength native phasing at X-ray free-electron lasers
Nass, K., Cheng, R., Vera, L., Mozzanica, A., Redford, S., Ozerov, D., … Milne, C. J. (2020). Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCrJ, 7, 965-975. https://doi.org/10.1107/S2052252520011379
Structural basis of noscapine activation for tubulin binding
Oliva, M. A., Prota, A. E., Rodríguez-Salarichs, J., Bennani, Y. L., Jiménez-Barbero, J., Bargsten, K., … Díaz, J. F. (2020). Structural basis of noscapine activation for tubulin binding. Journal of Medicinal Chemistry, 63(15), 8495-8501. https://doi.org/10.1021/acs.jmedchem.0c00855
Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules
Rodríguez-García, R., Volkov, V. A., Chen, C. Y., Katrukha, E. A., Olieric, N., Aher, A., … Akhmanova, A. (2020). Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules. Current Biology, 30(6), 972-987. https://doi.org/10.1016/j.cub.2020.01.036
 

Pages