Active Filters

  • (-) PSI Authors = Prasianakis, Nikolaos
Search Results 1 - 19 of 19
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Modelling Ra-bearing baryte nucleation/precipitation kinetics at the pore scale: application to radioactive waste disposal
Curti, E., Xto, J., Borca, C. N., Henzler, K., Huthwelker, T., & Prasianakis, N. I. (2019). Modelling Ra-bearing baryte nucleation/precipitation kinetics at the pore scale: application to radioactive waste disposal. European Journal of Mineralogy, 31(2), 247-262. https://doi.org/10.1127/ejm/2019/0031-2818
A pore-level direct numerical investigation of water evaporation characteristics under air and hydrogen in the gas diffusion layers of polymer electrolyte fuel cells
Safi, M. A., Mantzaras, J., Prasianakis, N. I., Lamibrac, A., & Büchi, F. N. (2019). A pore-level direct numerical investigation of water evaporation characteristics under air and hydrogen in the gas diffusion layers of polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 129, 1250-1262. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042
Multiscale modeling of ion diffusion in cement paste: electrical double layer effects
Yang, Y., Patel, R. A., Churakov, S. V., Prasianakis, N. I., Kosakowski, G., & Wang, M. (2019). Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cement and Concrete Composites, 96, 55-65. https://doi.org/10.1016/j.cemconcomp.2018.11.008
Development of pore-scale model for ingress of CO<sub>2</sub> brine through cement paste
Patel, R. A., & Prasianakis, N. I. (2018). Development of pore-scale model for ingress of CO2 brine through cement paste. In M. Azenha, D. Schlicke, F. Benboudjema, & A. Jędrzejewska (Eds.), RILEM proceedings: Vol. PRO 121. SynerCrete'18. Interdisciplinary approaches for cement-based materials and structural concrete: synergizing expertise and bridging scales of space and time. Final conference of COST Action TU1404. https://doi.org/10.5281/zenodo.1405563
Pore-scale modeling: a tool for exploring mechanisms of reactive transport processes in cementitious materials
Patel, R. A., Prasianakis, N. I., & Kulik, D. A. (2018). Pore-scale modeling: a tool for exploring mechanisms of reactive transport processes in cementitious materials. In G. Ye (Ed.), Vol. PRO 126. Workshop on concrete modelling and material behaviour in honor of Professor Klaas van Breugel. Paris: RILEM Publications.
Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations
Prasianakis, N. I., Gatschet, M., Abbasi, A., & Churakov, S. V. (2018). Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations. Geofluids, 2018, 9260603. https://doi.org/10.1155/2018/9260603
Experimental and Numerical Investigation of Fuel-Lean H<sub>2</sub>/CO/Air and H<sub>2</sub>/CH4/Air Catalytic Microreactors
Sui, R., Es-sebbar, Etouhami, Mantzaras, J., & Prasianakis, N. I. (2018). Experimental and Numerical Investigation of Fuel-Lean H2/CO/Air and H2/CH4/Air Catalytic Microreactors. Combustion Science and Technology, 190(2), 336-362. https://doi.org/10.1080/00102202.2017.1391231
Deciphering pore-level precipitation mechanisms
Prasianakis, N. I., Curti, E., Kosakowski, G., Poonoosamy, J., & Churakov, S. V. (2017). Deciphering pore-level precipitation mechanisms. Scientific Reports, 7(1), 13765. https://doi.org/10.1038/s41598-017-14142-0
Benchmark computations for 3D two-phase flows: A coupled lattice Boltzmann-level set study
Safi, M. A., Prasianakis, N., & Turek, S. (2017). Benchmark computations for 3D two-phase flows: A coupled lattice Boltzmann-level set study. Computers and Mathematics with Applications, 73(3), 520-536. https://doi.org/10.1016/j.camwa.2016.12.014
Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells
Safi, M. A., Prasianakis, N. I., Mantzaras, J., Lamibrac, A., & Büchi, F. N. (2017). Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 115, 238-249. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors
Sui, R., Prasianakis, N. I., Mantzaras, J., Mallya, N., Theile, J., Lagrange, D., & Friess, M. (2016). An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 141, 214-230. https://doi.org/10.1016/j.ces.2015.10.034
Thermal multicomponent lattice Boltzmann model for catalytic reactive flows
Kang, J., Prasianakis, N. I., & Mantzaras, J. (2014). Thermal multicomponent lattice Boltzmann model for catalytic reactive flows. Physical Review E, 89(6), 63310. https://doi.org/10.1103/PhysRevE.89.063310
Lattice Boltzmann model for thermal binary-mixture gas flows
Kang, J., Prasianakis, N. I., & Mantzaras, J. (2013). Lattice Boltzmann model for thermal binary-mixture gas flows. Physical Review E, 87(5), 053304 (11 pp.). https://doi.org/10.1103/PhysRevE.87.053304
Simulation of 3D porous media flows with application to polymer electrolyte fuel cells
Prasianakis, N. I., Rosén, T., Kang, J., Eller, J., Mantzaras, J., & Büchi, F. N. (2013). Simulation of 3D porous media flows with application to polymer electrolyte fuel cells. Communications in Computational Physics, 13(3), 851-866. https://doi.org/10.4208/cicp.341011.310112s
Lattice Boltzmann model for reactive flow simulations
Di Rienzo, A. F., Asinari, P., Chiavazzo, E., Prasianakis, N. I., & Mantzaras, J. (2012). Lattice Boltzmann model for reactive flow simulations. Europhysics Letters, 98(3), 34001 (6 pp.). https://doi.org/10.1209/0295-5075/98/34001
Saturation dependent effective transport properties of PEFC gas diffusion layers
Rosén, T., Eller, J., Kang, J., Prasianakis, N. I., Mantzaras, J., & Büchi, F. N. (2012). Saturation dependent effective transport properties of PEFC gas diffusion layers. Journal of the Electrochemical Society, 159(9), F536-F544. https://doi.org/10.1149/2.005209jes
Microflow simulations via the lattice Boltzmann method
Prasianakis, N., & Ansumali, S. (2011). Microflow simulations via the lattice Boltzmann method. Communications in Computational Physics, 9(5), 1128-1136. https://doi.org/10.4208/cicp.301009.271010s
Lattice Boltzmann method with restored Galilean invariance
Prasianakis, N. I., Karlin, I. V., Mantzaras, J., & Boulouchos, K. B. (2009). Lattice Boltzmann method with restored Galilean invariance. Physical Review E, 79(6), 066702 (7 pp.). https://doi.org/10.1103/PhysRevE.79.066702
Lattice Boltzmann method for simulation of compressible flows on standard lattices
Prasianakis, N. I., & Karlin, I. V. (2008). Lattice Boltzmann method for simulation of compressible flows on standard lattices. Physical Review E, 78(1), 016704 (7 pp.). https://doi.org/10.1103/PhysRevE.78.016704