| A new family of septuple-layer 2D materials of MoSi<sub>2</sub>N<sub>4</sub>-like crystals
Latychevskaia, T., Bandurin, D. A., & Novoselov, K. S. (2024). A new family of septuple-layer 2D materials of MoSi2N4-like crystals. Nature Reviews Physics, 6, 426-438. https://doi.org/10.1038/s42254-024-00728-x |
| Double-slit holography—a single-shot lensless imaging technique
Wicki, F., & Latychevskaia, T. (2024). Double-slit holography—a single-shot lensless imaging technique. Scientific Reports, 14, 12528 (9 pp.). https://doi.org/10.1038/s41598-024-62785-7 |
| Coherent imaging with low-energy electrons, quantitative analysis
Latychevskaia, T. (2023). Coherent imaging with low-energy electrons, quantitative analysis. Ultramicroscopy, 253, 113807 (10 pp.). https://doi.org/10.1016/j.ultramic.2023.113807 |
| Controlling topological states in bilayer graphene
Latychevskaia, T. (2023). Controlling topological states in bilayer graphene. Nature Nanotechnology, 18, 1126-1127. https://doi.org/10.1038/s41565-023-01454-8 |
| Potentials of individual atoms by convergent beam electron diffraction
Latychevskaia, T., Woods, C. R., Wang, Y. B., Holwill, M., Prestat, E., Mustafi, S., … Novoselov, K. S. (2023). Potentials of individual atoms by convergent beam electron diffraction. Carbon, 201, 244-250. https://doi.org/10.1016/j.carbon.2022.09.003 |
| Fourier transform holography: a lensless imaging technique, its principles and applications
Mustafi, S., & Latychevskaia, T. (2023). Fourier transform holography: a lensless imaging technique, its principles and applications. Photonics, 10(2), 153 (28 pp.). https://doi.org/10.3390/photonics10020153 |
| Imaging defects in two-dimensional crystals by convergent-beam electron diffraction
Latychevskaia, T., Huang, P., & Novoselov, K. S. (2022). Imaging defects in two-dimensional crystals by convergent-beam electron diffraction. Physical Review B, 105(18), 184113 (7 pp.). https://doi.org/10.1103/PhysRevB.105.184113 |
| Low-dose shift- and rotation-invariant diffraction recognition imaging
Latychevskaia, T., & Kohli, A. (2022). Low-dose shift- and rotation-invariant diffraction recognition imaging. Scientific Reports, 12(1), 11202 (9 pp.). https://doi.org/10.1038/s41598-022-15486-y |
| Bragg holography of nano-crystals
Latychevskaia, T., Cassidy, C., & Shintake, T. (2021). Bragg holography of nano-crystals. Ultramicroscopy, 230, 113376 (8 pp.). https://doi.org/10.1016/j.ultramic.2021.113376 |
| Holographic convergent electron beam diffraction (CBED) imaging of two-dimensional crystals
Latychevskaia, T., Haigh, S. J., & Novoselov, K. S. (2021). Holographic convergent electron beam diffraction (CBED) imaging of two-dimensional crystals. In K. S. Novoselov, A. T. S. Wee, & Arramel (Eds.), Molecular interactions on two-dimensional materials (pp. 303-331). https://doi.org/10.1142/9789811247859_0009 |
| Holographic convergent electron beam diffraction (CBED) imaging of two-dimensional crystals
Latychevskaia, T., Haigh, S. J., & Novoselov, K. S. (2021). Holographic convergent electron beam diffraction (CBED) imaging of two-dimensional crystals. Surface Review and Letters, 28(8), 2140001 (15 pp.). https://doi.org/10.1142/S0218625X21400011 |
| Phase retrieval methods applied to coherent imaging
Latychevskaia, T. (2021). Phase retrieval methods applied to coherent imaging. M. Hÿtch & P. W. Hawkes (Eds.), Advances in imaging and electron physics: Vol. 218. (pp. 1-62). https://doi.org/10.1016/bs.aiep.2021.04.001 |
| Symmetry of diffraction patterns of two-dimensional crystal structures
Latychevskaia, T., Zan, R., Morozov, S., & Novoselov, K. S. (2021). Symmetry of diffraction patterns of two-dimensional crystal structures. Ultramicroscopy, 228, 113336 (5 pp.). https://doi.org/10.1016/j.ultramic.2021.113336 |
| Three-dimensional structure from single two-dimensional diffraction intensity measurement
Latychevskaia, T. (2021). Three-dimensional structure from single two-dimensional diffraction intensity measurement. Physical Review Letters, 127(6), 063601 (6 pp.). https://doi.org/10.1103/PhysRevLett.127.063601 |
| Wavefront modulation and beam shaping into arbitrary three-dimensional intensity distributions
Latychevskaia, T. (2021). Wavefront modulation and beam shaping into arbitrary three-dimensional intensity distributions. Photonics, 8(6), 179 (10 pp.). https://doi.org/10.3390/photonics8060179 |
| Holography and coherent diffraction imaging with low-(30-250 eV) and high-(80-300 keV) energy electrons: history, principles, and recent trends
Latychevskaia, T. (2020). Holography and coherent diffraction imaging with low-(30-250 eV) and high-(80-300 keV) energy electrons: history, principles, and recent trends. Materials, 13(14), 3089 (36 pp.). https://doi.org/10.3390/ma13143089 |
| Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals
Latychevskaia, T., & Abrahams, J. P. (2019). Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75, 523-531. https://doi.org/10.1107/S2052520619009661 |
| Iterative phase retrieval for digital holography: tutorial
Latychevskaia, T. (2019). Iterative phase retrieval for digital holography: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 36(12), D31-D40. https://doi.org/10.1364/JOSAA.36.000D31 |
| Phase retrieval for digital holography
Latychevskaia, T. (2019). Phase retrieval for digital holography. In Digital holography and three-dimensional imaging. Digital holography and three-dimensional imaging 2019 (p. M5B.1 (2 pp.). https://doi.org/10.1364/DH.2019.M5B.1 |
| Three-dimensional double helical DNA structure directly revealed from its X-ray fiber diffraction pattern by iterative phase retrieval
Latychevskaia, T., & Fink, H. W. (2018). Three-dimensional double helical DNA structure directly revealed from its X-ray fiber diffraction pattern by iterative phase retrieval. Optics Express, 26(23), 30991-31017. https://doi.org/10.1364/OE.26.030991 |