Active Filters

  • (-) PSI Authors = Schmidt, Thomas J.
  • (-) PSI Laboratories = Condensed Matter LSC
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
Delving into Fe-content effects on surface reconstruction of Ba<sub>0.50</sub>Sr<sub>0.50</sub>Co<sub>1−x</sub>Fe<sub>x</sub>O<sub>3−δ</sub> for the oxygen evolution reaction
Aegerter, D., Fabbri, E., Borlaf, M., Yüzbasi, N. S., Diklić, N., Clark, A. H., … Schmidt, T. J. (2024). Delving into Fe-content effects on surface reconstruction of Ba0.50Sr0.50Co1−xFexO3−δ for the oxygen evolution reaction. Journal of Materials Chemistry A, 12(9), 5156-5169. https://doi.org/10.1039/d3ta06156f
Cobalt-free layered perovskites RBaCuFeO<sub>5+δ</sub> (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction
Marelli, E., Lyu, J., Morin, M., Leménager, M., Shang, T., Yüzbasi, N. S., … Medarde, M. (2024). Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction. EES Catalysis, 1(2), 335-350. https://doi.org/10.1039/D3EY00142C
Co<sub>1-<em>x</em></sub>Fe<em><sub>x</sub></em>O<em><sub>y</sub></em> oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy
Aegerter, D., Fabbri, E., Yüzbasi, N. S., Diklić, N., Clark, A. H., Nachtegaal, M., … Schmidt, T. J. (2023). Co1-xFexOy oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy. ACS Catalysis, 15899-15909. https://doi.org/10.1021/acscatal.3c04138
Breaking down the performance losses in O<sub>2</sub>-evolution stability tests of IrO<sub>2</sub>-based electrocatalysts
Diklić, N., Beard, A., Herranz, J., Heinritz, A., Cen, T., Garbe, S., … Schmidt, T. J. (2023). Breaking down the performance losses in O2-evolution stability tests of IrO2-based electrocatalysts. Journal of the Electrochemical Society, 170(7), 074503 (13 pp.). https://doi.org/10.1149/1945-7111/ace741
Direct evidence of cobalt oxyhydroxide formation on a La<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3</sub> perovskite water splitting catalyst
Boucly, A., Artiglia, L., Fabbri, E., Palagin, D., Aegerter, D., Pergolesi, D., … Schmidt, T. J. (2022). Direct evidence of cobalt oxyhydroxide formation on a La0.2Sr0.8CoO3 perovskite water splitting catalyst. Journal of Materials Chemistry A, 10(5), 2434-2444. https://doi.org/10.1039/D1TA04957G
Protagonists and spectators during photocatalytic solar water splitting with SrTaO<sub><em>x</em></sub>N<em><sub>y</sub></em> oxynitride
Lawley, C., Tehrani, Z. P., Clark, A. H., Safonova, O. V., Döbeli, M., Strocov, V. N., … Pergolesi, D. (2022). Protagonists and spectators during photocatalytic solar water splitting with SrTaOxNy oxynitride. Journal of Materials Chemistry A, 10(5), 2374-2387. https://doi.org/10.1039/D1TA05052D
Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo<sub>2</sub>O<sub>5+δ</sub>
Marelli, E., Gazquez, J., Poghosyan, E., Müller, E., Gawryluk, D. J., Pomjakushina, E., … Fabbri, E. (2021). Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo2O5+δ. Angewandte Chemie International Edition, 60(26), 14609-14619. https://doi.org/10.1002/anie.202103151
Probing the solid-liquid interface with tender x rays: a new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source
Novotny, Z., Aegerter, D., Comini, N., Tobler, B., Artiglia, L., Maier, U., … Osterwalder, J. (2020). Probing the solid-liquid interface with tender x rays: a new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Review of Scientific Instruments, 91(2), 023103 (10 pp.). https://doi.org/10.1063/1.5128600
A new in-situ spectroelectrochemical setup for FTIR measurements in operating high temperature polymer electrolyte fuel cells
Neophytides, G., Quaroni, L., Büchi, F. N., Orfanidi, A., Neophytides, S. G., & Schmidt, T. J. (2013). A new in-situ spectroelectrochemical setup for FTIR measurements in operating high temperature polymer electrolyte fuel cells. Electrochemistry Communications, 34, 200-203. https://doi.org/10.1016/j.elecom.2013.06.012