Active Filters

  • (-) PSI Authors = Deupi i Corral, Xavier
  • (-) PSI Authors ≠ Tsai, Ching-Ju
Search Results 1 - 20 of 47
Select Page
A tool for nuclear imaging of the SARS-CoV-2 entry receptor: molecular model and preclinical development of ACE2-selective radiopeptides
Beyer, D., Vaccarin, C., Deupi, X., Mapanao, A. K., Cohrs, S., Sozzi-Guo, F., … Müller, C. (2023). A tool for nuclear imaging of the SARS-CoV-2 entry receptor: molecular model and preclinical development of ACE2-selective radiopeptides. EJNMMI Research, 13(1), 32 (14 pp.). https://doi.org/10.1186/s13550-023-00979-2
Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology
Collu, G., Bierig, T., Krebs, A. S., Engilberge, S., Varma, N., Guixà-González, R., … Benoit, R. M. (2022). Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure, 30(1), 95-106. https://doi.org/10.1016/j.str.2021.09.002
β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells
Haider, R. S., Matthees, E. S. F., Drube, J., Reichel, M., Zabel, U., Inoue, A., … Hoffmann, C. (2022). β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells. Nature Communications, 13(1), 5638 (17 pp.). https://doi.org/10.1038/s41467-022-33307-8
Structural elements directing G proteins and <em>β</em>-arrestin interactions with the human melatonin type 2 receptor revealed by natural variants
Plouffe, B., Karamitri, A., Flock, T., Gallion, J. M., Houston, S., Daly, C. A., … Bouvier, M. (2022). Structural elements directing G proteins and β-arrestin interactions with the human melatonin type 2 receptor revealed by natural variants. ACS Pharmacology & Translational Science, 5(2), 89-101. https://doi.org/10.1021/acsptsci.1c00239
Identification of key regions mediating human melatonin type 1 receptor functional selectivity revealed by natural variants
Hegron, A., Huh, E., Deupi, X., Sokrat, B., Gao, W., Le Gouill, C., … Bouvier, M. (2021). Identification of key regions mediating human melatonin type 1 receptor functional selectivity revealed by natural variants. ACS Pharmacology & Translational Science, 4(5), 1614-1627. https://doi.org/10.1021/acsptsci.1c00157
An experimental strategy to probe Gq contribution to signal transduction in living cells
Patt, J., Alenfelder, J., Pfeil, E. M., Voss, J. H., Merten, N., Eryilmaz, F., … Kostenis, E. (2021). An experimental strategy to probe Gq contribution to signal transduction in living cells. Journal of Biological Chemistry, 296, 100472 (17 pp.). https://doi.org/10.1016/j.jbc.2021.100472
Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone
Romantini, N., Alam, S., Dobitz, S., Spillmann, M., De Foresta, M., Schibli, R., … Berger, P. (2021). Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone. Proceedings of the National Academy of Sciences of the United States of America PNAS, 118(48), e2108776118 (8 pp.). https://doi.org/10.1073/pnas.2108776118
Unraveling binding mechanism and kinetics of macrocyclic Gα<sub>q</sub> protein inhibitors
Voss, J. H., Nagel, J., Rafehi, M., Guixà-González, R., Malfacini, D., Patt, J., … Müller, C. E. (2021). Unraveling binding mechanism and kinetics of macrocyclic Gαq protein inhibitors. Pharmacological Research, 173, 105880 (16 pp.). https://doi.org/10.1016/j.phrs.2021.105880
Distance-dependent cellular uptake of oligoproline-based homobivalent ligands targeting GPCRs - an experimental and computational analysis
Dobitz, S., Wilhelm, P., Romantini, N., De Foresta, M., Walther, C., Ritler, A., … Wennemers, H. (2020). Distance-dependent cellular uptake of oligoproline-based homobivalent ligands targeting GPCRs - an experimental and computational analysis. Bioconjugate Chemistry, 31(10), 2431-2438. https://doi.org/10.1021/acs.bioconjchem.0c00484
Triazolo-peptidomimetics: novel radiolabeled minigastrin analogs for improved tumor targeting
Grob, N. M., Häussinger, D., Deupi, X., Schibli, R., Behe, M., & Mindt, T. L. (2020). Triazolo-peptidomimetics: novel radiolabeled minigastrin analogs for improved tumor targeting. Journal of Medicinal Chemistry, 63(9), 4484-4495. https://doi.org/10.1021/acs.jmedchem.9b01936
GPCRmd uncovers the dynamics of the 3D-GPCRome
Rodríguez-Espigares, I., Torrens-Fontanals, M., Tiemann, J. K. S., Aranda-García, D., Ramírez-Anguita, J. M., Stepniewski, T. M., … Selent, J. (2020). GPCRmd uncovers the dynamics of the 3D-GPCRome. Nature Methods, 17, 777-787. https://doi.org/10.1038/s41592-020-0884-y
Femtosecond-to-millisecond structural changes in a light-driven sodium pump
Skopintsev, P., Ehrenberg, D., Weinert, T., James, D., Kar, R. K., Johnson, P. J. M., … Standfuss, J. (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature, 583, 314-318. https://doi.org/10.1038/s41586-020-2307-8
The two-photon reversible reaction of the bistable jumping spider rhodopsin-1
Ehrenberg, D., Varma, N., Deupi, X., Koyanagi, M., Terakita, A., Schertler, G. F. X., … Lesca, E. (2019). The two-photon reversible reaction of the bistable jumping spider rhodopsin-1. Biophysical Journal, 116(7), 1248-1258. https://doi.org/10.1016/j.bpj.2019.02.025
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin
Haider, R. S., Wilhelm, F., Rizk, A., Mutt, E., Deupi, X., Peterhans, C., … Ostermaier, M. K. (2019). Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Scientific Reports, 9(1), 439 (13 pp.). https://doi.org/10.1038/s41598-018-36881-4
Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation
Mayer, D., Damberger, F. F., Samarasimhareddy, M., Feldmueller, M., Vuckovic, Z., Flock, T., … Veprintsev, D. B. (2019). Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nature Communications, 10, 1261 (14 pp.). https://doi.org/10.1038/s41467-019-09204-y
An online resource for GPCR structure determination and analysis
Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., … Gloriam, D. E. (2019). An online resource for GPCR structure determination and analysis. Nature Methods, 16(2), 151-162. https://doi.org/10.1038/s41592-018-0302-x
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
Nagata, T., Koyanagi, M., Tsukamoto, H., Mutt, E., Schertler, G. F. X., Deupi, X., & Terakita, A. (2019). The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Communications Biology, 2, 180 (9 pp.). https://doi.org/10.1038/s42003-019-0409-3
Elucidating the structure−activity relationship of the pentaglutamic acid sequence of minigastrin with cholecystokinin receptor subtype 2
Ritler, A., Shoshan, M. S., Deupi, X., Wilhelm, P., Schibli, R., Wennemers, H., & Béhé, M. (2019). Elucidating the structure−activity relationship of the pentaglutamic acid sequence of minigastrin with cholecystokinin receptor subtype 2. Bioconjugate Chemistry, 30(3), 657-666. https://doi.org/10.1021/acs.bioconjchem.8b00849
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR
Varma, N., Mutt, E., Mühle, J., Panneels, V., Terakita, A., Deupi, X., … Lesca, E. (2019). Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proceedings of the National Academy of Sciences of the United States of America PNAS, 116(29), 14547-14556. https://doi.org/10.1073/pnas.1902192116
Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish
Gerrard, E., Mutt, E., Nagata, T., Koyanagi, M., Flock, T., Lesca, E., … Lucas, R. J. (2018). Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish. Proceedings of the National Academy of Sciences of the United States of America PNAS, 115(24), 6201-6206. https://doi.org/10.1073/pnas.1721333115