Active Filters

  • (-) PSI Authors = Winkler, Fritz K.
Search Results 1 - 20 of 34
Select Page
Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction P<sub>II</sub> protein GlnZ from <em>Azospirillum brasilense</em>
Truan, D., Bjelić, S., Li, X. D., & Winkler, F. K. (2014). Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense. Journal of Molecular Biology, 426(15), 2783-2799. https://doi.org/10.1016/j.jmb.2014.05.008
Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization
Brozzo, M. S., Bjelić, S., Kisko, K., Schleier, T., Leppänen, V. M., Alitalo, K., … Ballmer-Hofer, K. (2012). Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, 119(7), 1781-1788. https://doi.org/10.1182/blood-2011-11-390922
Crystal structure of the GlnZ-DraG complex reveals a different form of P<sub>II</sub>-target interaction
Rajendran, C., Gerhardt, E. C. M., Bjelic, S., Gasperina, A., Scarduelli, M., Pedrosa, F. O., … Li, X. D. (2011). Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction. Proceedings of the National Academy of Sciences of the United States of America PNAS, 108(47), 18972-18976. https://doi.org/10.1073/pnas.1108038108
Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes
Hub, J. S., Winkler, F. K., Merrick, M., & De Groot, B. L. (2010). Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes. Journal of the American Chemical Society, 132(38), 13251-13263. https://doi.org/10.1021/ja102133x
A new P<sub>II</sub> protein structure identifies the 2-oxoglutarate binding site
Truan, D., Huergo, L. F., Chubatsu, L. S., Merrick, M., Li, X. D., & Winkler, F. K. (2010). A new PII protein structure identifies the 2-oxoglutarate binding site. Journal of Molecular Biology, 400(3), 531-539. https://doi.org/10.1016/j.jmb.2010.05.036
An EB1-binding motif acts as a microtubule tip localization signal
Honnappa, S., Gouveia, S. M., Weisbrich, A., Damberger, F. F., Bhavesh, N. S., Jawhari, H., … Steinmetz, M. O. (2009). An EB1-binding motif acts as a microtubule tip localization signal. Cell, 138(2), 366-376. https://doi.org/10.1016/j.cell.2009.04.065
Crystal Structure of Dinitrogenase Reductase-activating Glycohydrolase (DRAG) Reveals Conservation in the ADP-Ribosylhydrolase Fold and Specific Features in the ADP-Ribose-binding Pocket
Li, X. D., Huergo, L. F., Gasperina, A., Pedrosa, F. O., Merrick, M., & Winkler, F. K. (2009). Crystal Structure of Dinitrogenase Reductase-activating Glycohydrolase (DRAG) Reveals Conservation in the ADP-Ribosylhydrolase Fold and Specific Features in the ADP-Ribose-binding Pocket. Journal of Molecular Biology, 390(4), 737-746. https://doi.org/10.1016/j.jmb.2009.05.031
Mutational studies of <em>Pa</em>-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon <em>Pyrobaculum aerophilum</em>
Lingaraju, G. M., Prota, A. E., & Winkler, F. K. (2009). Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. DNA Repair, 8(7), 857-864. https://doi.org/10.1016/j.dnarep.2009.03.009
Formation of individual protein channels in lipid bilayers suspended in nanopores
Studer, A., Han, X., Winkler, F. K., & Tiefenauer, L. X. (2009). Formation of individual protein channels in lipid bilayers suspended in nanopores. Colloids and Surfaces B: Biointerfaces, 73(2), 325-331. https://doi.org/10.1016/j.colsurfb.2009.06.006
Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the <em>Escherichia coli </em>ammonia channel AmtB
Javelle, A., Lupo, D., Ripoche, P., Fulford, T., Merrick, M., & Winkler, F. K. (2008). Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proceedings of the National Academy of Sciences of the United States of America PNAS, 105(13), 5040-5045. https://doi.org/10.1073/pnas.0711742105
The crystal structure of the <em>Escherichia coli</em> AmtB-GlnK complex reveals how GlnK regulates the ammonia channel
Conroy, M. J., Durand, A., Lupo, D., Li, X. D., Bullough, P. A., Winkler, F. K., & Merrick, M. (2007). The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proceedings of the National Academy of Sciences of the United States of America PNAS, 104(4), 1213-1218. https://doi.org/10.1073/pnas.0610348104
Nanopore arrays for stable and functional free-standing lipid bilayers
Han, X., Studer, A., Sehr, H., Geissbühler, I., Di Berardino, M., Winkler, F. K., & Tiefenauer, L. X. (2007). Nanopore arrays for stable and functional free-standing lipid bilayers. Advanced Materials, 19(24), 4466-4470. https://doi.org/10.1002/adma.200700468
Reprint of "Structural and mechanistic aspects of Amt/Rh proteins" [J. Struct. Biol. 158 (2007) 472-481]
Javelle, A., Lupo, D., Li, X. D., Merrick, M., Chami, M., Ripoche, P., & Winkler, F. K. (2007). Reprint of "Structural and mechanistic aspects of Amt/Rh proteins" [J. Struct. Biol. 158 (2007) 472-481]. Journal of Structural Biology, 159(2), 243-252. https://doi.org/10.1016/S1047-8477(07)00165-7
Structural and mechanistic aspects of Amt/Rh proteins
Javelle, A., Lupo, D., Li, X. D., Merrick, M., Chami, M., Ripoche, P., & Winkler, F. K. (2007). Structural and mechanistic aspects of Amt/Rh proteins. Journal of Structural Biology, 158(3), 472-481. https://doi.org/10.1016/j.jsb.2007.01.004
The <em>Caenorhabditis elegans</em> septin complex is nonpolar
John, C. M., Hite, R. K., Weirich, C. S., Fitzgerald, D. J., Jawhari, H., Faty, M., … Steinmetz, M. O. (2007). The Caenorhabditis elegans septin complex is nonpolar. EMBO Journal, 26(14), 3296-3307. https://doi.org/10.1038/sj.emboj.7601775
The 1.3-Å resolution structure of <em>Nitrosomonas europaea</em> Rh50 and mechanistic implications for NH<sub>3</sub> transport by Rhesus family proteins
Lupo, D., Li, X. D., Durand, A., Tomizaki, T., Cherif-Zahar, B., Matassi, G., … Winkler, F. K. (2007). The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proceedings of the National Academy of Sciences of the United States of America PNAS, 104(49), 19303-19308. https://doi.org/10.1073/pnas.0706563104
Configurational entropy elucidates the role of salt-bridge networks in protein thermostability
Missimer, J. H., Steinmetz, M. O., Baron, R., Winkler, F. K., Kammerer, R. A., Daura, X., & Van Gunsteren, W. F. (2007). Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Science, 16(7), 1349-1359. https://doi.org/10.1110/ps.062542907
Structural basis for the specific inhibition of protein kinase G, a virulence factor of <em>Mycobacterium tuberculosis</em>
Scherr, N., Honnappa, S., Kunz, G., Mueller, P., Jayachandran, R., Winkler, F., … Steinmetz, M. O. (2007). Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America PNAS, 104(29), 12151-12156. https://doi.org/10.1073/pnas.0702842104
Key interaction modes of dynamic +TIP networks
Honnappa, S., Okhrimenko, O., Jaussi, R., Jawhari, H., Jelesarov, I., Winkler, F. K., & Steinmetz, M. O. (2006). Key interaction modes of dynamic +TIP networks. Molecular Cell, 23(5), 663-671. https://doi.org/10.1016/j.molcel.2006.07.013
An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance
Javelle, A., Lupo, D., Zheng, L., Li, X. D., Winkler, F. K., & Merrick, M. (2006). An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance. Journal of Biological Chemistry, 281(51), 39492-39498. https://doi.org/10.1074/jbc.M608325200