Active Filters

  • (-) PSI Authors = Vazquez-Rodriguez, Carlos
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO<sub>3</sub>
Butcher, T. A., Phillips, N. W., Chiu, C. C., Wei, C. C., Ho, S. Z., Chen, Y. C., … Raabe, J. (2024). Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO3. Advanced Materials, 36(23), 2311157 (6 pp.). https://doi.org/10.1002/adma.202311157
EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning
Constantinou, P., Stock, T. J. Z., Tseng, L. T., Kazazis, D., Muntwiler, M., Vaz, C. A. F., … Schofield, S. R. (2024). EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning. Nature Communications, 15(1), 694 (13 pp.). https://doi.org/10.1038/s41467-024-44790-6
Anomalous electrons in a metallic kagome ferromagnet
Ekahana, S. A., Soh, Y., Tamai, A., Gosálbez-Martínez, D., Yao, M., Hunter, A., … Aeppli, G. (2024). Anomalous electrons in a metallic kagome ferromagnet. Nature, 627(8002), 67-72. https://doi.org/10.1038/s41586-024-07085-w
Charge-exchange-driven interfacial antiferromagnetic ground state in La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> ultrathin films
Panchal, G., Stramaglia, F., & Vaz, C. A. F. (2024). Charge-exchange-driven interfacial antiferromagnetic ground state in La0.8Sr0.2MnO3 ultrathin films. APL Materials, 12(6), 061117 (6 pp.). https://doi.org/10.1063/5.0206368
Direct imaging of the magnetoelectric coupling in multiferroic BaTiO<sub>3</sub>/La<sub>0.9</sub>Ba<sub>0.1</sub>MnO<sub>3</sub>
Stramaglia, F., Panchal, G., Tovaglieri, L., Lichtensteiger, C., Nolting, F., & Vaz, C. A. F. (2024). Direct imaging of the magnetoelectric coupling in multiferroic BaTiO3/La0.9Ba0.1MnO3. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 42(2), 023208 (10 pp.). https://doi.org/10.1116/6.0003005
Fully magnetically polarized ultrathin La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> films
Stramaglia, F., Panchal, G., Nolting, F., & Vaz, C. A. F. (2024). Fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films. ACS Applied Materials and Interfaces, 16(3), 4138-4149. https://doi.org/10.1021/acsami.3c14031
Measurement of the induced magnetic polarisation of rotated-domain graphene grown on Co film with polarised neutron reflectivity
Aboljadayel, R. O. M., Kinane, C. J., Vaz, C. A. F., Love, D. M., Martin, M. B., Cabrero-Vilatela, A., … Langridge, S. (2023). Measurement of the induced magnetic polarisation of rotated-domain graphene grown on Co film with polarised neutron reflectivity. Nanomaterials, 13(19), 2620 (11 pp.). https://doi.org/10.3390/nano13192620
Efficient magnetic switching in a correlated spin glass
Krempaský, J., Springholz, G., D'Souza, S. W., Caha, O., Gmitra, M., Ney, A., … Dil, J. H. (2023). Efficient magnetic switching in a correlated spin glass. Nature Communications, 14(1), 6127 (11 pp.). https://doi.org/10.1038/s41467-023-41718-4
Benchmarking the performance of lithiated metal oxide interlayers at the LiCoO<sub>2</sub>|LLZO interface
Müller, A., Okur, F., Aribia, A., Osenciat, N., Vaz, C. A. F., Siller, V., … Romanyuk, Y. E. (2023). Benchmarking the performance of lithiated metal oxide interlayers at the LiCoO2|LLZO interface. Materials Advances, 4(9), 2138-2146. https://doi.org/10.1039/d3ma00155e
Effect of intense x-ray free-electron laser transient gratings on the magnetic domain structure of Tm:YIG
Ukleev, V., Burian, M., Gliga, S., Vaz, C. A. F., Rösner, B., Fainozzi, D., … Staub, U. (2023). Effect of intense x-ray free-electron laser transient gratings on the magnetic domain structure of Tm:YIG. Journal of Applied Physics, 133(12), 123902 (6 pp.). https://doi.org/10.1063/5.0119241
Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles
Vijayakumar, J., Savchenko, T. M., Bracher, D. M., Lumbeeck, G., Béché, A., Verbeeck, J., … Kleibert, A. (2023). Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles. Nature Communications, 14(1), 174 (11 pp.). https://doi.org/10.1038/s41467-023-35846-0
Unravelling the origin of ultra‐low conductivity in SrTiO<sub>3</sub> thin films: Sr vacancies and Ti on A‐sites cause fermi level pinning
Morgenbesser, M., Viernstein, A., Schmid, A., Herzig, C., Kubicek, M., Taibl, S., … Fleig, J. (2022). Unravelling the origin of ultra‐low conductivity in SrTiO3 thin films: Sr vacancies and Ti on A‐sites cause fermi level pinning. Advanced Functional Materials, 32(38), 2202226 (20 pp.). https://doi.org/10.1002/adfm.202202226
Reactivity and potential profile across the electrochemical LiCoO<sub>2</sub>-Li<sub>3</sub>PS<sub>4 </sub>interface probed by operando X-ray photoelectron spectroscopy
Wu, X., Mirolo, M., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy. ACS Applied Materials and Interfaces, 13(36), 42670-42681. https://doi.org/10.1021/acsami.1c09605
Electric field control of magnetism in multiferroic heterostructures
Vaz, C. A. F. (2012). Electric field control of magnetism in multiferroic heterostructures. Journal of Physics: Condensed Matter, 24(33), 333201 (29 pp.). https://doi.org/10.1088/0953-8984/24/33/333201
Controlling the electronic structure of Co<sub>1-<em>x</em></sub>Fe<sub>2+<em>x</em></sub>O<sub>4</sub> thin films through iron doping
Moyer, J. A., Vaz, C. A. F., Negusse, E., Arena, D. A., & Henrich, V. E. (2011). Controlling the electronic structure of Co1-xFe2+xO4 thin films through iron doping. Physical Review B, 83(3), 035121 (10 pp.). https://doi.org/10.1103/PhysRevB.83.035121