Active Filters

  • (-) PSI Groups = 4403 Transport Mechanisms
  • (-) Journals ≠ Cement-based materials for nuclear waste storage
Search Results 1 - 20 of 247

Pages

  • RSS Feed
Select Page
Fast uncertainty quantification of spent nuclear fuel with neural networks
Albà, A., Adelmann, A., Münster, L., Rochman, D., & Boiger, R. (2024). Fast uncertainty quantification of spent nuclear fuel with neural networks. Annals of Nuclear Energy, 196, 110204 (8 pp.). https://doi.org/10.1016/j.anucene.2023.110204
Isotope diffusive exchange experiments for deriving porewater isotope composition in low-permeability rocks - improvements in experimental procedure and data processing
Aschwanden, L., Waber, H. N., Eichinger, F., & Gimmi, T. (2024). Isotope diffusive exchange experiments for deriving porewater isotope composition in low-permeability rocks - improvements in experimental procedure and data processing. Applied Geochemistry, 160, 105844 (14 pp.). https://doi.org/10.1016/j.apgeochem.2023.105844
Machine learning based longitudinal virtual diagnostics at SwissFEL
Bettoni, S., Orlandi, G. L., Salomone, F., Boiger, R., Ischebeck, R., Xue, R., & Mostacci, A. (2024). Machine learning based longitudinal virtual diagnostics at SwissFEL. Review of Scientific Instruments, 95(1), 015110 (12 pp.). https://doi.org/10.1063/5.0179712
Profiles of δ<sup>18</sup>O and δ<sup>2</sup>H in porewater of a Mesozoic rock sequence: Regional variability and relation to large-scale transport regimes
Gimmi, T., Aschwanden, L., Waber, H. N., Gaucher, E. C., Ma, J., & Traber, D. (2024). Profiles of δ18O and δ2H in porewater of a Mesozoic rock sequence: Regional variability and relation to large-scale transport regimes. Applied Geochemistry, 160, 105846 (13 pp.). https://doi.org/10.1016/j.apgeochem.2023.105846
Towards a model-based interpretation of measurements of mineralogical and chemical compositions
Hauser, J., Miron, G. D., Kyas, S., Leal, A. M. M., & Gunning, J. (2024). Towards a model-based interpretation of measurements of mineralogical and chemical compositions. Mathematical Geosciences. https://doi.org/10.1007/s11004-023-10121-6
Contact-point analysis of attached-wall cavitation evolution on chemically patterned surfaces using the lattice Boltzmann method
He, X., & Peng, H. (2024). Contact-point analysis of attached-wall cavitation evolution on chemically patterned surfaces using the lattice Boltzmann method. Chemical Engineering Science, 287, 119753 (16 pp.). https://doi.org/10.1016/j.ces.2024.119753
Performance analysis of data-driven and physics-informed machine learning methods for thermal-hydraulic processes in Full-scale Emplacement experiment
Hu, G., Prasianakis, N., Churakov, S. V., & Pfingsten, W. (2024). Performance analysis of data-driven and physics-informed machine learning methods for thermal-hydraulic processes in Full-scale Emplacement experiment. Applied Thermal Engineering, 245, 122836 (17 pp.). https://doi.org/10.1016/j.applthermaleng.2024.122836
A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis
Khatoonabadi, M., Prasianakis, N. I., & Mantzaras, J. (2024). A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis. International Journal of Heat and Mass Transfer, 221, 125025 (16 pp.). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125025
Optimized thermodynamic properties of REE aqueous species (REE<sup>3+</sup> and REEOH<sup>2+</sup>) and experimental database for modeling the solubility of REE phosphate minerals (monazite, xenotime, and rhabdophane) from 25 to 300 °C
Pan, R., Gysi, A. P., Miron, G. D., & Zhu, C. (2024). Optimized thermodynamic properties of REE aqueous species (REE3+ and REEOH2+) and experimental database for modeling the solubility of REE phosphate minerals (monazite, xenotime, and rhabdophane) from 25 to 300 °C. Chemical Geology, 643, 121817 (21 pp.). https://doi.org/10.1016/j.chemgeo.2023.121817
Modeling inception and evolution of near-wall vapor thermo-cavitation bubbles via a lattice Boltzmann method
Peng, H., & He, X. (2024). Modeling inception and evolution of near-wall vapor thermo-cavitation bubbles via a lattice Boltzmann method. International Journal of Hydrogen Energy, 49(Part B), 828-849. https://doi.org/10.1016/j.ijhydene.2023.09.092
Three-dimensional modelling of cavitation bubble collapse using non-orthogonal multiple-relaxation-time lattice Boltzmann method
Peng, H., Fei, L., He, X., Carmeliet, J., Churakov, S. V., & Prasianakis, N. I. (2024). Three-dimensional modelling of cavitation bubble collapse using non-orthogonal multiple-relaxation-time lattice Boltzmann method. Ocean Engineering, 294, 116720 (19 pp.). https://doi.org/10.1016/j.oceaneng.2024.116720
Thermodynamic model of MSWI flue gas cooling path: Effect of flue gas composition on heavy metal binding forms
Wolffers, M., Kulik, D. A., Miron, G. D., Eggenberger, U., & Churakov, S. V. (2024). Thermodynamic model of MSWI flue gas cooling path: Effect of flue gas composition on heavy metal binding forms. Waste Management and Research, 42(3), 273-284. https://doi.org/10.1177/0734242X231178213
Lattice Boltzmann modelling of multicomponent and multiphase flow with high density ratio
Yang, Q., He, X., & Peng, H. (2024). Lattice Boltzmann modelling of multicomponent and multiphase flow with high density ratio. European Journal of Mechanics: B/Fluids, 105, 14-24. https://doi.org/10.1016/j.euromechflu.2023.12.014
Chloride accessible porosity fractions across the Jurassic sedimentary rocks of northern Switzerland
Zwahlen, C., Gimmi, T., Jenni, A., Kiczka, M., Mazurek, M., Van Loon, L. R., … Traber, D. (2024). Chloride accessible porosity fractions across the Jurassic sedimentary rocks of northern Switzerland. Applied Geochemistry, 162, 105841 (14 pp.). https://doi.org/10.1016/j.apgeochem.2023.105841
Microstructure development of slag activated with sodium silicate solution: experimental characterization and thermodynamic modeling
Caron, R., Patel, R. A., Miron, G. D., Le Galliard, C., Lothenbach, B., & Dehn, F. (2023). Microstructure development of slag activated with sodium silicate solution: experimental characterization and thermodynamic modeling. Journal of Building Engineering, 71, 106398 (18 pp.). https://doi.org/10.1016/j.jobe.2023.106398
A lattice Boltzmann investigation of liquid viscosity effects on the evolution of a cavitation bubble attached to chemically patterned walls
He, X., Peng, H., & Zhang, J. (2023). A lattice Boltzmann investigation of liquid viscosity effects on the evolution of a cavitation bubble attached to chemically patterned walls. Physics of Fluids, 35(9), 093303 (15 pp.). https://doi.org/10.1063/5.0169239
A lattice Boltzmann study of the thermodynamics of an interaction between two cavitation bubbles
He, X., Song, X., Peng, H., & Yuan, H. (2023). A lattice Boltzmann study of the thermodynamics of an interaction between two cavitation bubbles. Discrete and Continuous Dynamical Systems-Series S. https://doi.org/10.3934/dcdss.2023156
Deciphering surface tension effects of double cavitation bubbles interaction: a lattice Boltzmann study
He, X., Song, X., Zhang, J., Peng, H., & Zhou, S. (2023). Deciphering surface tension effects of double cavitation bubbles interaction: a lattice Boltzmann study. International Journal of Thermal Sciences, 189, 108266 (21 pp.). https://doi.org/10.1016/j.ijthermalsci.2023.108266
Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: a lattice Boltzmann study
He, X., Song, X., Peng, H., Huang, W., & Zhang, J. (2023). Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: a lattice Boltzmann study. Ocean Engineering, 276, 114261 (15 pp.). https://doi.org/10.1016/j.oceaneng.2023.114261
Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method
He, X., Peng, H., Zhang, J., & Yuan, H. (2023). Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method. Computers and Fluids, 252, 105771 (21 pp.). https://doi.org/10.1016/j.compfluid.2022.105771
 

Pages