Active Filters

  • (-) PSI Groups = 5105 Applied Catalysis and Spectroscopy
Search Results 1 - 20 of 102

Pages

  • RSS Feed
Select Page
On the relevance of P poisoning in real-world DOC aging
Agote-Arán, M., Elsener, M., Schütze, F. W., Schilling, C. M., Sridhar, M., Katsaounis, E., … Ferri, D. (2021). On the relevance of P poisoning in real-world DOC aging. Applied Catalysis B: Environmental, 291, 120062 (10 pp.). https://doi.org/10.1016/j.apcatb.2021.120062
Changes of Pd oxidation state in Pd/Al<sub>2</sub>O<sub>3</sub> catalysts using modulated excitation DRIFTS
Chiarello, G. L., Lu, Y., Agote-Arán, M., Pellegrini, R., & Ferri, D. (2021). Changes of Pd oxidation state in Pd/Al2O3 catalysts using modulated excitation DRIFTS. Catalysts, 11(1), 116 (13 pp.). https://doi.org/10.3390/catal11010116
HCN production from formaldehyde during the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> over V<sub>2</sub>O<sub>5</sub>/WO<sub>3</sub>-TiO<sub>2</sub>
Elsener, M., Nuguid, R. J. G., Kröcher, O., & Ferri, D. (2021). HCN production from formaldehyde during the selective catalytic reduction of NOx with NH3 over V2O5/WO3-TiO2. Applied Catalysis B: Environmental, 281, 119462 (8 pp.). https://doi.org/10.1016/j.apcatb.2020.119462
Effect of short reducing pulses on the dynamic structure, activity, and stability of Pd/Al<sub>2</sub>O<sub>3</sub> for wet lean methane oxidation
Franken, T., Roger, M., Petrov, A. W., Clark, A. H., Agote-Arán, M., Krumeich, F., … Ferri, D. (2021). Effect of short reducing pulses on the dynamic structure, activity, and stability of Pd/Al2O3 for wet lean methane oxidation. ACS Catalysis, 11(8), 4870-4879. https://doi.org/10.1021/acscatal.1c00328
Structure and performance of zeolite supported Pd for complete methane oxidation
Friberg, I., Clark, A. H., Ho, P. H., Sadokhina, N., Smales, G. J., Woo, J., … Olsson, L. (2021). Structure and performance of zeolite supported Pd for complete methane oxidation. Catalysis Today. https://doi.org/10.1016/j.cattod.2020.11.026
Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO<sub>2</sub> methanation
Summa, P., Samojeden, B., Motak, M., Wierzbicki, D., Alxneit, I., Świerczek, K., & Da Costa, P. (2021). Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation. Catalysis Today. https://doi.org/10.1016/j.cattod.2021.05.004
Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: a combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements
Wang, M., Dimopoulos Eggenschwiler, P., Franken, T., Ferri, D., & Kröcher, O. (2021). Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: a combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements. Chemical Engineering Journal, 422, 129932 (11 pp.). https://doi.org/10.1016/j.cej.2021.129932
CuO/La&lt;sub&gt;0.5&lt;/sub&gt;Sr&lt;sub&gt;0.5&lt;/sub&gt;CoO&lt;sub&gt;3&lt;/sub&gt;: precursor of efficient NO reduction catalyst studied by &lt;em&gt;operando &lt;/em&gt;high energy X-ray diffraction under three-way catalytic conditions
Alxneit, I., Garbujo, A., Carollo, G., Ferri, D., & Glisenti, A. (2020). CuO/La0.5Sr0.5CoO3: precursor of efficient NO reduction catalyst studied by operando high energy X-ray diffraction under three-way catalytic conditions. Physical Chemistry Chemical Physics, 22(34), 18798-18805. https://doi.org/10.1039/d0cp01064b
Particle size distributions from electron microscopy images: avoiding pitfalls
Alxneit, I. (2020). Particle size distributions from electron microscopy images: avoiding pitfalls. Journal of Physical Chemistry A, 124(48), 10075-10081. https://doi.org/10.1021/acs.jpca.0c07840
Water inhibition of oxymethylene dimethyl ether synthesis over zeolite H-beta: a combined kinetic and &lt;em&gt;in situ&lt;/em&gt; ATR-IR study
Baranowski, C. J., Fovanna, T., Roger, M., Signorile, M., McCaig, J., Bahmanpour, A. M., … Kröcher, O. (2020). Water inhibition of oxymethylene dimethyl ether synthesis over zeolite H-beta: a combined kinetic and in situ ATR-IR study. ACS Catalysis, 10(15), 8106-8119. https://doi.org/10.1021/acscatal.0c01805
Cu/CGO cermet based electrodes for symmetric and reversible solid oxide fuel cells
Carollo, G., Garbujo, A., Bedon, A., Ferri, D., Natile, M. M., & Glisenti, A. (2020). Cu/CGO cermet based electrodes for symmetric and reversible solid oxide fuel cells. International Journal of Hydrogen Energy, 45(25), 13652-13658. https://doi.org/10.1016/j.ijhydene.2018.01.201
Pd-LaFeO&lt;sub&gt;3&lt;/sub&gt; catalysts in aqueous ethanol: Pd reduction, leaching, and structural transformations in the presence of a base
Checchia, S., Mulligan, C. J., Emerich, H., Alxneit, I., Krumeich, F., Di Michiel, M., … Newton, M. A. (2020). Pd-LaFeO3 catalysts in aqueous ethanol: Pd reduction, leaching, and structural transformations in the presence of a base. ACS Catalysis, 10(6), 3933-3944. https://doi.org/10.1021/acscatal.9b04869
Fluorescence-detected quick-scanning X-ray absorption spectroscopy
Clark, A. H., Steiger, P., Bornmann, B., Hitz, S., Frahm, R., Ferri, D., & Nachtegaal, M. (2020). Fluorescence-detected quick-scanning X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 27, 681-688. https://doi.org/10.1107/S1600577520002350
Selective catalytic reduction of NO with NH&lt;sub&gt;3&lt;/sub&gt; on Cu−SSZ-13: deciphering the low and high-temperature rate-limiting steps by transient XAS experiments
Clark, A. H., Nuguid, R. J. G., Steiger, P., Marberger, A., Petrov, A. W., Ferri, D., … Kröcher, O. (2020). Selective catalytic reduction of NO with NH3 on Cu−SSZ-13: deciphering the low and high-temperature rate-limiting steps by transient XAS experiments. ChemCatChem, 12(5), 1429-1435. https://doi.org/10.1002/cctc.201901916
Catalysis by metals on perovskite-type oxides
Ferri, D. (2020). Catalysis by metals on perovskite-type oxides. Catalysts, 10(9), 1062 (3 pp.). https://doi.org/10.3390/catal10091062
Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural
Fovanna, T., Campisi, S., Villa, A., Kambolis, A., Peng, G., Rentsch, D., … Ferri, D. (2020). Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Advances, 10(19), 11507-11516. https://doi.org/10.1039/D0RA00415D
Are Fe based catalysts an upcoming alternative to Ni in CO&lt;sub&gt;2&lt;/sub&gt; methanation at elevated pressure?
Franken, T., & Heel, A. (2020). Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? Journal of CO2 Utilization, 39, 101175 (8 pp.). https://doi.org/10.1016/j.jcou.2020.101175
Solid solutions in reductive environment – A case study on improved CO&lt;sub&gt;2&lt;/sub&gt; hydrogenation to methane on cobalt based catalysts derived from ternary mixed metal oxides by modified reducibility
Franken, T., Terreni, J., Borgschulte, A., & Heel, A. (2020). Solid solutions in reductive environment – A case study on improved CO2 hydrogenation to methane on cobalt based catalysts derived from ternary mixed metal oxides by modified reducibility. Journal of Catalysis, 382, 385-394. https://doi.org/10.1016/j.jcat.2019.12.045
Detection of key transient Cu intermediates in SSZ-13 during NH&lt;sub&gt;3&lt;/sub&gt;-SCR deNO&lt;em&gt;&lt;sub&gt;x&lt;/sub&gt;&lt;/em&gt; by modulation excitation IR spectroscopy
Greenaway, A. G., Marberger, A., Thetford, A., Lezcano-González, I., Agote-Arán, M., Nachtegaal, M., … Beale, A. M. (2020). Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy. Chemical Science, 11(2), 447-455. https://doi.org/10.1039/C9SC04905C
Influence of CO on dry CH&lt;sub&gt;4&lt;/sub&gt; oxidation on Pd/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; by operando spectroscopy: a multitechnique modulated excitation study
Marchionni, V., Nachtegaal, M., & Ferri, D. (2020). Influence of CO on dry CH4 oxidation on Pd/Al2O3 by operando spectroscopy: a multitechnique modulated excitation study. ACS Catalysis, 10(8), 4791-4804. https://doi.org/10.1021/acscatal.9b05541
 

Pages