Active Filters

  • (-) PSI Groups = 5105 Applied Catalysis and Spectroscopy
  • (-) Journals ≠ Catalysis Science and Technology
Search Results 1 - 20 of 170

Pages

  • RSS Feed
Select Page
Effects of alloying palladium with gold in furfural hydrogenation:An in situ ATR-IR spectroscopy and density functional theory study
Campisi, S., Bellomi, S., Chinchilla, L. E., Stucchi, M., Prati, L., Roldan, A., … Villa, A. (2024). Effects of alloying palladium with gold in furfural hydrogenation:An in situ ATR-IR spectroscopy and density functional theory study. Catalysis Communications, 106894 (8 pp.). https://doi.org/10.1016/j.catcom.2024.106894
Revealing different lead species of PbCl<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub>, PbSO<sub>4</sub> and PbCO<sub>3</sub> poisoning effects on Mn-Ce/CuX catalyst for low-temperature NH<sub>3</sub>-SCR of NO
Chen, L., Xing, X., Wang, M., Chen, Z., Li, X., & Ren, S. (2024). Revealing different lead species of PbCl2, Pb(NO3)2, PbSO4 and PbCO3 poisoning effects on Mn-Ce/CuX catalyst for low-temperature NH3-SCR of NO. Separation and Purification Technology, 330, 125376 (13 pp.). https://doi.org/10.1016/j.seppur.2023.125376
Operando VII
Ferri, D., & Nachtegaal, M. (2024). Operando VII. Chimia, 78(1-2), 73-74. https://doi.org/10.2533/chimia.2024.73
Design principles of <em>operando </em>ultraviolet-visible and electron paramagnetic resonance spectroscopy setups for active site characterization in ion-exchanged zeolites
Fischer, J. W. A., Buttignol, F., Brenig, A., Klose, D., Ferri, D., Sushkevich, V., … Jeschke, G. (2024). Design principles of operando ultraviolet-visible and electron paramagnetic resonance spectroscopy setups for active site characterization in ion-exchanged zeolites. Catalysis Today, 429, 114503 (10 pp.). https://doi.org/10.1016/j.cattod.2023.114503
Machine learning for quantitative structural information from infrared spectra: the case of palladium hydride
Usoltsev, O., Tereshchenko, A., Skorynina, A., Kozyr, E., Soldatov, A., Safonova, O., … Bugaev, A. (2024). Machine learning for quantitative structural information from infrared spectra: the case of palladium hydride. Small Methods, 2301397 (5 pp.). https://doi.org/10.1002/smtd.202301397
Thermal sintering and phosphorus poisoning of a layered Diesel oxidation catalyst
Agote-Arán, M., Jacobsen, V. V., Elsener, M., Schütze, F. W., Schilling, C. M., Sridhar, M., … Ferri, D. (2023). Thermal sintering and phosphorus poisoning of a layered Diesel oxidation catalyst. Topics in Catalysis, 66(13-14), 777-786. https://doi.org/10.1007/s11244-022-01752-w
Effect of different zinc species on Mn-Ce/CuX catalyst for low-temperature NH<sub>3</sub>-SCR Reaction: comparison of ZnCl<sub>2</sub>, Zn(NO<sub>3</sub>)<sub>2</sub>, ZnSO<sub>4</sub> and ZnCO<sub>3</sub>
Chen, L., Ren, S., Chen, T., Li, X., Chen, Z., Wang, M., … Yang, J. (2023). Effect of different zinc species on Mn-Ce/CuX catalyst for low-temperature NH3-SCR Reaction: comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3. Catalysts, 13(8), 1219 (17 pp.). https://doi.org/10.3390/catal13081219
Low-temperature NH<sub>3</sub>-SCR performance and in situ DRIFTS study on zeolite X-supported different crystal phases of MnO<sub>2</sub> catalysts
Chen, L., Ren, S., Chen, T., Li, X., Wang, M., Chen, Z., & Liu, Q. (2023). Low-temperature NH3-SCR performance and in situ DRIFTS study on zeolite X-supported different crystal phases of MnO2 catalysts. Catalysts, 13(4), 682 (15 pp.). https://doi.org/10.3390/catal13040682
Stability and reactivity of a polyoxymethylene dimethyl ether over typical catalysts for Diesel emission control
Elsener, M., Jacob, E., Ferri, D., & Kröcher, O. (2023). Stability and reactivity of a polyoxymethylene dimethyl ether over typical catalysts for Diesel emission control. Topics in Catalysis, 66(13-14), 797-803. https://doi.org/10.1007/s11244-022-01725-z
Diffuse reflectance infrared spectroscopy of adsorbates in liquid phase
Fovanna, T., & Ferri, D. (2023). Diffuse reflectance infrared spectroscopy of adsorbates in liquid phase. Talanta, 264, 124734 (4 pp.). https://doi.org/10.1016/j.talanta.2023.124734
Preparation, quantification, and reaction of Pd hydrides on Pd/Al<sub>2</sub>O<sub>3</sub> in liquid environment
Fovanna, T., Nachtegaal, M., Clark, A. H., Kröcher, O., & Ferri, D. (2023). Preparation, quantification, and reaction of Pd hydrides on Pd/Al2O3 in liquid environment. ACS Catalysis, 13(5), 3323-3332. https://doi.org/10.1021/acscatal.2c04791
In situ neutron diffraction of Zn-MOF-74 reveals nanoconfinement-induced effects on adsorbed propene
Gäumann, P., Ferri, D., Sheptyakov, D., van Bokhoven, J. A., Rzepka, P., & Ranocchiari, M. (2023). In situ neutron diffraction of Zn-MOF-74 reveals nanoconfinement-induced effects on adsorbed propene. Journal of Physical Chemistry C, 127(33), 16636-16644. https://doi.org/10.1021/acs.jpcc.3c03225
Post-synthetic covalent grafting of amines to NH<sub>2</sub>-MOF for post-combustion carbon capture
Justin, A., Espín, J., Pougin, M. J., Stoian, D., Schertenleib, T., Mensi, M., … Queen, W. L. (2023). Post-synthetic covalent grafting of amines to NH2-MOF for post-combustion carbon capture. Advanced Functional Materials, 2307430 (10 pp.). https://doi.org/10.1002/adfm.202307430
A simple, transition metal catalyst-free method for the design of complex organic building blocks used to construct porous metal-organic frameworks
Kochetygov, I., Roth, J., Espín, J., Pache, S., Justin, A., Schertenleib, T., … Queen, W. L. (2023). A simple, transition metal catalyst-free method for the design of complex organic building blocks used to construct porous metal-organic frameworks. Angewandte Chemie International Edition, 62(16), e202215595 (9 pp.). https://doi.org/10.1002/anie.202215595
<em>Operando </em>spectroscopic study of reduction and oxidation half-cycles in NH<sub>3</sub>-SCR over CeO<sub>2</sub>-supported WO<sub>3</sub>
Kubota, H., Jing, Y., Wan, L., Tong, J., Zhang, N., Mine, S., … Shimizu, Kichi. (2023). Operando spectroscopic study of reduction and oxidation half-cycles in NH3-SCR over CeO2-supported WO3. ACS Catalysis, 13(13), 9274-9288. https://doi.org/10.1021/acscatal.3c01665
Case study 1: modulation excitation spectroscopy (MES)
Nuguid, R. J. G., & Ferri, D. (2023). Case study 1: modulation excitation spectroscopy (MES). In I. Wachs & M. A. Bañares (Eds.), Springer handbooks. Springer handbook of advanced catalyst characterization (pp. 979-989). https://doi.org/10.1007/978-3-031-07125-6_43
Assessing the effect of O<sub>2</sub> dithering on CH<sub>4</sub> oxidation on Pd/Al<sub>2</sub>O<sub>3</sub>
Roger, M., Kröcher, O., & Ferri, D. (2023). Assessing the effect of O2 dithering on CH4 oxidation on Pd/Al2O3. Chemical Engineering Journal, 451, 138865 (10 pp.). https://doi.org/10.1016/j.cej.2022.138865
Improving time-resolution and sensitivity of <em>in situ</em> X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation
Roger, M., Artiglia, L., Boucly, A., Buttignol, F., Agote-Arán, M., van Bokhoven, J. A., … Ferri, D. (2023). Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation. Chemical Science, 14(27), 7482-7491. https://doi.org/10.1039/d3sc01274c
Platinum‐iron(II) oxide sites directly responsible for preferential carbon monoxide oxidation at ambient temperature: an operando X‐ray absorption spectroscopy study
Sadykov, I. I., Sushkevich, V. L., Krumeich, F., Nuguid, R. J. G., van Bokhoven, J. A., Nachtegaal, M., & Safonova, O. (2023). Platinum‐iron(II) oxide sites directly responsible for preferential carbon monoxide oxidation at ambient temperature: an operando X‐ray absorption spectroscopy study. Angewandte Chemie International Edition, 62(1), e202214032 (11 pp.). https://doi.org/10.1002/anie.202214032
Surface species in direct liquid phase synthesis of dimethyl carbonate from methanol and CO<sub>2</sub>: an MCR-ALS augmented ATR-IR study
Signorile, M., Salusso, D., Crocellà, V., Paganini, M. C., Bordiga, S., Bonino, F., & Ferri, D. (2023). Surface species in direct liquid phase synthesis of dimethyl carbonate from methanol and CO2: an MCR-ALS augmented ATR-IR study. Physical Chemistry Chemical Physics, 25(12), 8392-8402. https://doi.org/10.1039/d2cp05800f
 

Pages