Active Filters

  • (-) PSI Groups = 5400 Electrochemistry
  • (-) Keywords ≠ fuel cells
Search Results 1 - 20 of 220

Pages

  • RSS Feed
Select Page
Advanced electrolyte formula for robust operation of vanadium redox flow batteries at elevated temperatures
Nguyen, T. D., Whitehead, A., Wai, N., Scherer, G. G., Simonov, A. N., Xu, Z. J., & MacFarlane, D. R. (2024). Advanced electrolyte formula for robust operation of vanadium redox flow batteries at elevated temperatures. Small, 2311771 (12 pp.). https://doi.org/10.1002/smll.202311771
Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis
Schuler, T., Weber, C. C., Wrubel, J. A., Gubler, L., Pivovar, B., Büchi, F. N., & Bender, G. (2024). Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis. Advanced Energy Materials, 14(7), 2302786 (12 pp.). https://doi.org/10.1002/aenm.202302786
Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis
Weber, C. C., De Angelis, S., Meinert, R., Appel, C., Holler, M., Guizar-Sicairos, M., … Büchi, F. N. (2024). Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. EES Catalysis, 2(2), 585-602. https://doi.org/10.1039/d3ey00279a
Analysis of the MPL/GDL interface: impact of MPL intrusion into the GDL substrate
Berger, A., Chen, Y. C., Gatzemeier, J., Schmidt, T. J., Büchi, F. N., & Gasteiger, H. A. (2023). Analysis of the MPL/GDL interface: impact of MPL intrusion into the GDL substrate. Journal of the Electrochemical Society, 170(9), 094509 (20 pp.). https://doi.org/10.1149/1945-7111/acfa26
On the water transport mechanism through the microporous layers of <em>operando </em>polymer electrolyte fuel cells probed directly by X-ray tomographic microscopy
Chen, Y. C., Dörenkamp, T., Csoklich, C., Berger, A., Marone, F., Eller, J., … Büchi, F. N. (2023). On the water transport mechanism through the microporous layers of operando polymer electrolyte fuel cells probed directly by X-ray tomographic microscopy. Energy Advances, 2(9), 1447-1463. https://doi.org/10.1039/d3ya00189j
Performance-determining factors for Si-graphite electrode evaluation: the role of mass loading and amount of electrolyte additive
Surace, Y., Jeschull, F., Novák, P., & Trabesinger, S. (2023). Performance-determining factors for Si-graphite electrode evaluation: the role of mass loading and amount of electrolyte additive. Journal of the Electrochemical Society, 170(2), 020510 (7 pp.). https://doi.org/10.1149/1945-7111/acb854
Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire
Birch, M. T., Cortés-Ortuño, D., Litzius, K., Wintz, S., Schulz, F., Weigand, M., … Schütz, G. (2022). Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire. Nature Communications, 13(1), 3630 (8 pp.). https://doi.org/10.1038/s41467-022-31335-y
High performance doped Li-rich Li<sub>1+x</sub>Mn<sub>2-x</sub>O<sub>4</sub> cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route
Falqueto, J. B., Clark, A. H., Štefančič, A., Smales, G. J., Vaz, C. A. F., Schuler, A. J., … El Kazzi, M. (2022). High performance doped Li-rich Li1+xMn2-xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route. ACS Applied Energy Materials, 5(7), 8357-8370. https://doi.org/10.1021/acsaem.2c00902
Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery
Surace, Y., Leanza, D., Mirolo, M., Kondracki, Ł., Vaz, C. A. F., El Kazzi, M., … Trabesinger, S. (2022). Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 44, 156-167. https://doi.org/10.1016/j.ensm.2021.10.013
Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735
Instability of PVDF binder in the LiFePO&lt;sub&gt;4&lt;/sub&gt;&lt;em&gt; versus&lt;/em&gt; Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; Li‐Ion battery cell
Leanza, D., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li‐Ion battery cell. Helvetica Chimica Acta, 104(1), e2000183 (9 pp.). https://doi.org/10.1002/hlca.202000183
Unveiling the complex redox reactions of SnO&lt;sub&gt;2&lt;/sub&gt;in Li-Ion batteries using &lt;em&gt;operando&lt;/em&gt; X-ray photoelectron spectroscopy and &lt;em&gt;in situ&lt;/em&gt; X-ray absorption spectroscopy
Mirolo, M., Wu, X., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Unveiling the complex redox reactions of SnO2in Li-Ion batteries using operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. ACS Applied Materials and Interfaces, 13(2), 2547-2557. https://doi.org/10.1021/acsami.0c17936
Rechargeable batteries for simultaneous demand peak shaving and price arbitrage business
Schneider, S. F., Novák, P., & Kober, T. (2021). Rechargeable batteries for simultaneous demand peak shaving and price arbitrage business. IEEE Transactions on Sustainable Energy, 12(1), 148-157. https://doi.org/10.1109/TSTE.2020.2988205
Reactivity and potential profile across the electrochemical LiCoO<sub>2</sub>-Li<sub>3</sub>PS<sub>4 </sub>interface probed by operando X-ray photoelectron spectroscopy
Wu, X., Mirolo, M., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy. ACS Applied Materials and Interfaces, 13(36), 42670-42681. https://doi.org/10.1021/acsami.1c09605
Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries
Zhang, L., Müller Gubler, E. A., Tai, C. W., Kondracki, Ł., Sommer, H., Novák, P., … Trabesinger, S. (2021). Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries. ACS Applied Materials and Interfaces, 14(11), 13240-13249. https://doi.org/10.1021/acsami.1c23128
Lithium-ion batteries - current state of the art and anticipated developments
Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., … Zhang, H. (2020). Lithium-ion batteries - current state of the art and anticipated developments. Journal of Power Sources, 479, 228708 (26 pp.). https://doi.org/10.1016/j.jpowsour.2020.228708
Insights into the charge storage mechanism of Li&lt;sub&gt;3&lt;/sub&gt;VO&lt;sub&gt;4&lt;/sub&gt; anode materials for Li-ion batteries
Asakura, R., Bolli, C., Novák, P., & Robert, R. (2020). Insights into the charge storage mechanism of Li3VO4 anode materials for Li-ion batteries. ChemElectroChem, 7(9), 2033-2041. https://doi.org/10.1002/celc.202000161
Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications
Ben youcef, H., Henkensmeier, D., Balog, S., Scherer, G. G., & Gubler, L. (2020). Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications. International Journal of Hydrogen Energy, 45(11), 7059-7068. https://doi.org/10.1016/j.ijhydene.2019.12.208
Anisotropy-induced depinning in the Zn-substituted skyrmion host Cu&lt;sub&gt;2&lt;/sub&gt;OSeO&lt;sub&gt;3&lt;/sub&gt;
Birch, M. T., Moody, S. H., Wilson, M. N., Crisanti, M., Bewley, O., Štefančič, A., … Hatton, P. D. (2020). Anisotropy-induced depinning in the Zn-substituted skyrmion host Cu2OSeO3. Physical Review B, 102(10), 104424 (16 pp.). https://doi.org/10.1103/PhysRevB.102.104424
Coating of Li&lt;sub&gt;1+x&lt;/sub&gt;[Ni&lt;sub&gt;0.85&lt;/sub&gt;Co&lt;sub&gt;0.10&lt;/sub&gt;Mn&lt;sub&gt;0.05&lt;/sub&gt;]&lt;sub&gt;1-x&lt;/sub&gt;O&lt;sub&gt;2 &lt;/sub&gt; cathode active material with gaseous BF&lt;sub&gt;3&lt;/sub&gt;
Eisele, L., Skrotzki, J., Schneider, M., Bolli, C., Erk, C., Ludwig, T., … Krossing, I. (2020). Coating of Li1+x[Ni0.85Co0.10Mn0.05]1-xO2  cathode active material with gaseous BF3. Journal of the Electrochemical Society, 167(12), 120505 (12 pp.). https://doi.org/10.1149/1945-7111/aba8b8
 

Pages