Active Filters

  • (-) PSI Groups = 5411 Battery Materials and Diacnostics
Search Results 1 - 20 of 75

Pages

  • RSS Feed
Select Page
High performance doped Li-rich Li<sub>1+x</sub>Mn<sub>2-x</sub>O<sub>4</sub> cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route
Falqueto, J. B., Clark, A. H., Štefančič, A., Smales, G. J., Vaz, C. A. F., Schuler, A. J., … El Kazzi, M. (2022). High performance doped Li-rich Li1+xMn2-xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route. ACS Applied Energy Materials, 5(7), 8357-8370. https://doi.org/10.1021/acsaem.2c00902
Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery
Surace, Y., Leanza, D., Mirolo, M., Kondracki, Ł., Vaz, C. A. F., El Kazzi, M., … Trabesinger, S. (2022). Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 44, 156-167. https://doi.org/10.1016/j.ensm.2021.10.013
Fluorinated cyclic ether co-solvents for ultra-high-voltage practical lithium-metal batteries
Zhao, Y., Zhou, T., El Kazzi, M., & Coskun, A. (2022). Fluorinated cyclic ether co-solvents for ultra-high-voltage practical lithium-metal batteries. ACS Applied Energy Materials, 5(6), 7784-7790. https://doi.org/10.1021/acsaem.2c01261
Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries
Zhao, Y., Zhou, T., Ashirov, T., Kazzi, M. E., Cancellieri, C., Jeurgens, L. P. H., … Coskun, A. (2022). Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications, 13, 2575 (9 pp.). https://doi.org/10.1038/s41467-022-29199-3
Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries
Zhou, T., Zhao, Y., El Kazzi, M., Choi, J. W., & Coskun, A. (2022). Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 61(19), e202115884 (6 pp.). https://doi.org/10.1002/anie.202115884
Megahertz dynamics in skyrmion systems probed with muon-spin relaxation
Hicken, T. J., Wilson, M. N., Franke, K. J. A., Huddart, B. M., Hawkhead, Z., Gomilšek, M., … Lancaster, T. (2021). Megahertz dynamics in skyrmion systems probed with muon-spin relaxation. Physical Review B, 103(2), 024428 (8 pp.). https://doi.org/10.1103/PhysRevB.103.024428
Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735
Instability of PVDF binder in the LiFePO&lt;sub&gt;4&lt;/sub&gt;&lt;em&gt; versus&lt;/em&gt; Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; Li‐Ion battery cell
Leanza, D., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li‐Ion battery cell. Helvetica Chimica Acta, 104(1), e2000183 (9 pp.). https://doi.org/10.1002/hlca.202000183
Unveiling the complex redox reactions of SnO&lt;sub&gt;2&lt;/sub&gt;in Li-Ion batteries using &lt;em&gt;operando&lt;/em&gt; X-ray photoelectron spectroscopy and &lt;em&gt;in situ&lt;/em&gt; X-ray absorption spectroscopy
Mirolo, M., Wu, X., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Unveiling the complex redox reactions of SnO2in Li-Ion batteries using operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. ACS Applied Materials and Interfaces, 13(2), 2547-2557. https://doi.org/10.1021/acsami.0c17936
Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries
Pham, H. Q., Nguyen, M. T., Tarik, M., El Kazzi, M., & Trabesinger, S. (2021). Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries. ChemSusChem, 14(11), 2461-2474. https://doi.org/10.1002/cssc.202100511
Reactivity and potential profile across the electrochemical LiCoO<sub>2</sub>-Li<sub>3</sub>PS<sub>4 </sub>interface probed by operando X-ray photoelectron spectroscopy
Wu, X., Mirolo, M., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy. ACS Applied Materials and Interfaces, 13(36), 42670-42681. https://doi.org/10.1021/acsami.1c09605
Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries
Zhang, L., Müller Gubler, E. A., Tai, C. W., Kondracki, Ł., Sommer, H., Novák, P., … Trabesinger, S. (2021). Elucidating the humidity-induced degradation of Ni-Rich layered cathodes for Li-ion batteries. ACS Applied Materials and Interfaces, 14(11), 13240-13249. https://doi.org/10.1021/acsami.1c23128
Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries
Zhou, T., Zhao, Y., El Kazzi, M., Choi, J. W., & Coskun, A. (2021). Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries. ACS Energy Letters, 6(5), 1711-1718. https://doi.org/10.1021/acsenergylett.1c00274
Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes
Bargardi, F. L., Billaud, J., Villevieille, C., Bouville, F., & Studart, A. R. (2020). Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. Scientific Reports, 10(1), 12401 (10 pp.). https://doi.org/10.1038/s41598-020-69141-5
Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries
Ferraresi, G., Uhlenbruck, S., Tsai, C. L., Novák, P., & Villevieille, C. (2020). Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries. Batteries and Supercaps, 3(6), 557-565. https://doi.org/10.1002/batt.201900173
Li<sub>4-<em>x</em></sub>Ge<sub>1-<em>x</em></sub>P<em><sub>x</sub></em>O<sub>4</sub>, a potential solid-state electrolyte for all-oxide microbatteries
Gilardi, E., Materzanini, G., Kahle, L., Döbeli, M., Lacey, S., Cheng, X., … Lippert, T. (2020). Li4-xGe1-xPxO4, a potential solid-state electrolyte for all-oxide microbatteries. ACS Applied Energy Materials, 3(10), 9910-9917. https://doi.org/10.1021/acsaem.0c01601
Study of graphite cycling in sulfide solid electrolytes
Höltschi, L., Jud, F., Borca, C., Huthwelker, T., Villevieille, C., Pelé, V., … Novák, P. (2020). Study of graphite cycling in sulfide solid electrolytes. Journal of the Electrochemical Society, 167(11), 110558 (10 pp.). https://doi.org/10.1149/1945-7111/aba36f
The solid-state Li-ion conductor Li&lt;sub&gt;7&lt;/sub&gt;TaO&lt;sub&gt;6&lt;/sub&gt;: a combined computational and experimental study
Kahle, L., Cheng, X., Binninger, T., Lacey, S. D., Marcolongo, A., Zipoli, F., … Pergolesi, D. (2020). The solid-state Li-ion conductor Li7TaO6: a combined computational and experimental study. Solid State Ionics, 347, 115226 (11 pp.). https://doi.org/10.1016/j.ssi.2020.115226
Influence of Na/Mn arrangements and P2/P&#039;2 phase ratio on the electrochemical performance of Na&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;MnO&lt;sub&gt;2&lt;/sub&gt; cathodes for sodium-ion batteries
Kulka, A., Marino, C., Walczak, K., Borca, C., Bolli, C., Novák, P., & Villevieille, C. (2020). Influence of Na/Mn arrangements and P2/P'2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 8(12), 6022-6033. https://doi.org/10.1039/C9TA12176E
How to overcome Na deficiency in full cell using P2-phase sodium cathode - a proof of concept study of Na-rhodizonate used as sodium reservoir
Marelli, E., Marino, C., Bolli, C., & Villevieille, C. (2020). How to overcome Na deficiency in full cell using P2-phase sodium cathode - a proof of concept study of Na-rhodizonate used as sodium reservoir. Journal of Power Sources, 450, 227617 (8 pp.). https://doi.org/10.1016/j.jpowsour.2019.227617
 

Pages