Active Filters

  • (-) PSI Groups = 5411 Battery Materials and Diagnostics
  • (-) Keywords = Li-ion batteries
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries
Ferraresi, G., Uhlenbruck, S., Tsai, C. L., Novák, P., & Villevieille, C. (2020). Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries. Batteries and Supercaps, 3(6), 557-565. https://doi.org/10.1002/batt.201900173
Cr-doped Li-rich nickel cobalt manganese oxide as a positive electrode material in Li-ion batteries to enhance cycling stability
Sallard, S., Billaud, J., Sheptyakov, D., Novák, P., & Villevieille, C. (2020). Cr-doped Li-rich nickel cobalt manganese oxide as a positive electrode material in Li-ion batteries to enhance cycling stability. ACS Applied Energy Materials, 3(9), 8646-8657. https://doi.org/10.1021/acsaem.0c01235
Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi<sub>0.25</sub>Ti<sub>1.5</sub> Fe<sub>0.5&l
Srout, M., El Kazzi, M., Ben Youcef, H., Fromm, K. M., & Saadoune, I. (2020). Improvement of the electrochemical performance by partial chemical substitution into the lithium site of titanium phosphate-based electrode materials for lithium-ion batteries: LiNi0.25Ti1.5 Fe0.5(PO4)3. Journal of Power Sources, 461, 228114 (8 pp.). https://doi.org/10.1016/j.jpowsour.2020.228114
A cylindrical cell for <em>operando </em>neutron diffraction of Li-ion battery electrode materials
Vitoux, L., Reichardt, M., Sallard, S., Novák, P., Sheptyakov, D., & Villevieille, C. (2018). A cylindrical cell for operando neutron diffraction of Li-ion battery electrode materials. Frontiers in Energy Research, 6, 76 (16 pp.). https://doi.org/10.3389/fenrg.2018.00076
Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries
Ferraresi, G., Czornomaz, L., Villevieille, C., Novák, P., & El Kazzi, M. (2016). Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries. ACS Applied Materials and Interfaces, 8(43), 29791-29798. https://doi.org/10.1021/acsami.6b10929
Freeze-dryed Li<sub>x</sub>MoO<sub>3</sub> nanobelts used as cathode materials for lithium-ion batteries: a bulk and interface study
Villevieille, C., Gorzkowska-Sobas, A., Fjellvåg, H., & Novák, P. (2015). Freeze-dryed LixMoO3 nanobelts used as cathode materials for lithium-ion batteries: a bulk and interface study. Journal of Power Sources, 297, 276-282. https://doi.org/10.1016/j.jpowsour.2015.07.082
<em>Ex situ</em> and <em>in situ</em> Raman microscopic investigation of the differences between stoichiometric LiMO<sub>2</sub> and high-energy <em>x</em>Li<sub>2</sub>MnO<sub>3</sub>·(1–<em>x</em>)LiMO<sub>2</sub> (M = Ni, Co, Mn)
Lanz, P., Villevieille, C., & Novák, P. (2014). Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, Mn). Electrochimica Acta, 130, 206-212. https://doi.org/10.1016/j.electacta.2014.03.004
Effect of metal ion and ball milling on the electrochemical properties of M<sub>0.5</sub>TiOPO<sub>4</sub> (M = Ni, Cu, Mg)
Godbole, V. A., Villevieille, C., & Novák, P. (2013). Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg). Electrochimica Acta, 93, 179-188. https://doi.org/10.1016/j.electacta.2013.01.104
Electrochemical activation of Li<sub>2</sub>MnO<sub>3</sub> at elevated temperature investigated by <em>in situ</em> Raman microscopy
Lanz, P., Villevieille, C., & Novák, P. (2013). Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy. Electrochimica Acta, 109, 426-432. https://doi.org/10.1016/j.electacta.2013.07.130
Oxygen release from high-energy <em>x</em>Li<sub>2</sub>MnO<sub>3</sub>·(1 - <em>x</em>)LiMO<sub>2</sub> (M = Mn, Ni, Co): electrochemical, differential electrochemical mass spectrometric, <em>in situ</em> pressure, and <em>in situ</em> temperature charac
Lanz, P., Sommer, H., Schulz-Dobrick, M., & Novák, P. (2013). Oxygen release from high-energy xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co): electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochimica Acta, 93, 114-119. https://doi.org/10.1016/j.electacta.2013.01.105
A structural and electrochemical study of Ni<sub>0.5</sub>TiOPO<sub>4</sub> synthesized via modified solution route
Godbole, V. A., Villevieille, C., Sommer, H. H., Colin, J. F., & Novák, P. (2012). A structural and electrochemical study of Ni0.5TiOPO4 synthesized via modified solution route. Electrochimica Acta, 77, 244-249. https://doi.org/10.1016/j.electacta.2012.05.094