Active Filters

  • (-) PSI Groups = 5412 Phase Boundaries
Search Results 1 - 20 of 46
Select Page
Operando monitoring the insulator-metal transition of LiCoO<sub>2</sub>
Flores, E., Mozhzhukhina, N., Aschauer, U., & Berg, E. J. (2021). Operando monitoring the insulator-metal transition of LiCoO2. ACS Applied Materials and Interfaces, 13(19), 22540-22548. https://doi.org/10.1021/acsami.1c04383
Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries
Pham, H. Q., Nguyen, M. T., Tarik, M., El Kazzi, M., & Trabesinger, S. (2021). Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-Ion batteries. ChemSusChem. https://doi.org/10.1002/cssc.202100511
Rechargeable batteries for simultaneous demand peak shaving and price arbitrage business
Schneider, S. F., Novák, P., & Kober, T. (2021). Rechargeable batteries for simultaneous demand peak shaving and price arbitrage business. IEEE Transactions on Sustainable Energy, 12(1), 148-157. https://doi.org/10.1109/TSTE.2020.2988205
Unlocking anionic redox activity in O3-type sodium 3<em>d</em> layered oxides via Li substitution
Wang, Q., Mariyappan, S., Rousse, G., Morozov, A. V., Porcheron, B., Dedryvère, R., … Tarascon, J. M. (2021). Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 20(3), 353-361. https://doi.org/10.1038/s41563-020-00870-8
Lithium-ion batteries - current state of the art and anticipated developments
Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., … Zhang, H. (2020). Lithium-ion batteries - current state of the art and anticipated developments. Journal of Power Sources, 479, 228708 (26 pp.). https://doi.org/10.1016/j.jpowsour.2020.228708
Insights into the charge storage mechanism of Li&lt;sub&gt;3&lt;/sub&gt;VO&lt;sub&gt;4&lt;/sub&gt; anode materials for Li-ion batteries
Asakura, R., Bolli, C., Novák, P., & Robert, R. (2020). Insights into the charge storage mechanism of Li3VO4 anode materials for Li-ion batteries. ChemElectroChem, 7(9), 2033-2041. https://doi.org/10.1002/celc.202000161
Coating of Li&lt;sub&gt;1+x&lt;/sub&gt;[Ni&lt;sub&gt;0.85&lt;/sub&gt;Co&lt;sub&gt;0.10&lt;/sub&gt;Mn&lt;sub&gt;0.05&lt;/sub&gt;]&lt;sub&gt;1-x&lt;/sub&gt;O&lt;sub&gt;2 &lt;/sub&gt; cathode active material with gaseous BF&lt;sub&gt;3&lt;/sub&gt;
Eisele, L., Skrotzki, J., Schneider, M., Bolli, C., Erk, C., Ludwig, T., … Krossing, I. (2020). Coating of Li1+x[Ni0.85Co0.10Mn0.05]1-xO2  cathode active material with gaseous BF3. Journal of the Electrochemical Society, 167(12), 120505 (12 pp.). https://doi.org/10.1149/1945-7111/aba8b8
Cation ordering and redox chemistry of layered Ni-rich Li&lt;em&gt;&lt;sub&gt;x&lt;/sub&gt;&lt;/em&gt;Ni&lt;sub&gt;1-2&lt;/sub&gt;&lt;em&gt;&lt;sub&gt;y&lt;/sub&gt;&lt;/em&gt;Co&lt;em&gt;&lt;sub&gt;y&lt;/sub&gt;&lt;/em&gt;Mn&lt;em&gt;&lt;sub&gt;y&lt;/sub&
Flores, E., Novák, P., Aschauer, U., & Berg, E. J. (2020). Cation ordering and redox chemistry of layered Ni-rich LixNi1-2yCoyMnyO2: an operando Raman spectroscopy study. Chemistry of Materials, 32(1), 186-194. https://doi.org/10.1021/acs.chemmater.9b03202
Elucidating the reactivity of tris(trimethylsilyl)phosphite and tris(trimethylsilyl)phosphate additives in carbonate electrolytes - a comparative online electrochemical mass spectrometry study
Guéguen, A., Bolli, C., Mendez, M. A., & Berg, E. J. (2020). Elucidating the reactivity of tris(trimethylsilyl)phosphite and tris(trimethylsilyl)phosphate additives in carbonate electrolytes - a comparative online electrochemical mass spectrometry study. ACS Applied Energy Materials, 3(1), 290-299. https://doi.org/10.1021/acsaem.9b01551
Influence of water contamination on the SEI formation in Li-ion cells: an operando EQCM-D study
Kitz, P. G., Novák, P., & Berg, E. J. (2020). Influence of water contamination on the SEI formation in Li-ion cells: an operando EQCM-D study. ACS Applied Materials and Interfaces, 12(13), 15934-15942. https://doi.org/10.1021/acsami.0c01642
Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate
Kitz, P. G., Lacey, M. J., Novák, P., & Berg, E. J. (2020). Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. Journal of Power Sources, 477, 228567 (9 pp.). https://doi.org/10.1016/j.jpowsour.2020.228567
Influence of Na/Mn arrangements and P2/P&#039;2 phase ratio on the electrochemical performance of Na&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;MnO&lt;sub&gt;2&lt;/sub&gt; cathodes for sodium-ion batteries
Kulka, A., Marino, C., Walczak, K., Borca, C., Bolli, C., Novák, P., & Villevieille, C. (2020). Influence of Na/Mn arrangements and P2/P'2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 8(12), 6022-6033. https://doi.org/10.1039/C9TA12176E
How to overcome Na deficiency in full cell using P2-phase sodium cathode - a proof of concept study of Na-rhodizonate used as sodium reservoir
Marelli, E., Marino, C., Bolli, C., & Villevieille, C. (2020). How to overcome Na deficiency in full cell using P2-phase sodium cathode - a proof of concept study of Na-rhodizonate used as sodium reservoir. Journal of Power Sources, 450, 227617 (8 pp.). https://doi.org/10.1016/j.jpowsour.2019.227617
Coating of NCM 851005 cathode material with Al0@Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; and subsequent treatment with anhydrous HF
Martens, A., Bolli, C., Hoffmann, A., Erk, C., Ludwig, T., El Kazzi, M., … Krossing, I. (2020). Coating of NCM 851005 cathode material with Al0@Al2O3 and subsequent treatment with anhydrous HF. Journal of the Electrochemical Society, 167(7), 070510 (10 pp.). https://doi.org/10.1149/1945-7111/ab68d0
Simplifying the synthesis of carbon inverse opals
Mcnulty, D., Landgraf, V., & Trabesinger, S. (2020). Simplifying the synthesis of carbon inverse opals. RSC Advances, 10(40), 24108-24114. https://doi.org/10.1039/d0ra03693e
The importance of sulfur host structural preservation for lithium-sulfur battery performance
Mcnulty, D., Landgraf, V., & Trabesinger, S. (2020). The importance of sulfur host structural preservation for lithium-sulfur battery performance. Journal of Materials Chemistry A, 8(48), 26085-26097. https://doi.org/10.1039/d0ta08690h
Direct &lt;em&gt;operando &lt;/em&gt;observation of double layer charging and early solid electrolyte interphase formation in Li-ion battery electrolytes
Mozhzhukhina, N., Flores, E., Lundström, R., Nyström, V., Kitz, P. G., Edström, K., & Berg, E. J. (2020). Direct operando observation of double layer charging and early solid electrolyte interphase formation in Li-ion battery electrolytes. Journal of Physical Chemistry Letters, 11(10), 4119-4123. https://doi.org/10.1021/acs.jpclett.0c01089
Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphiteǁLiCoO&lt;sub&gt;2&lt;/sub&gt; pouch cell under −20°C
Pham, H. Q., Chung, G. J., Han, J., Hwang, E. H., Kwon, Y. G., & Song, S. W. (2020). Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphiteǁLiCoO2 pouch cell under −20°C. Journal of Chemical Physics, 152(9), 094709 (10 pp.). https://doi.org/10.1063/1.5144280
Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells
Pham, H. Q., Mirolo, M., Tarik, M., El Kazzi, M., & Trabesinger, S. (2020). Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Materials, 33, 216-229. https://doi.org/10.1016/j.ensm.2020.08.026
Comparing nanoparticles for drug delivery: the effect of physiological dispersion media on nanoparticle properties
Ross, A. M., Kennedy, T., McNulty, D., Leahy, C. I., Walsh, D. R., Murray, P., … Mulvihill, J. J. E. (2020). Comparing nanoparticles for drug delivery: the effect of physiological dispersion media on nanoparticle properties. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 113, 110985 (13 pp.). https://doi.org/10.1016/j.msec.2020.110985