| Enabling LiNO<sub>3</sub> in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries
Winter, E., Briccola, M., Schmidt, T. J., & Trabesinger, S. (2024). Enabling LiNO3 in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries. Applied Research, 3(1), e202200096 (11 pp.). https://doi.org/10.1002/appl.202200096 |
| Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 1: performance and gas evolution
Jeschull, F., Zhang, L., Kondracki, Ł., Scott, F., & Trabesinger, S. (2023). Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 1: performance and gas evolution. Journal of Physics: Energy, 5(2), 025003 (16 pp.). https://doi.org/10.1088/2515-7655/acbbed |
| Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 2: a photoelectron spectroscopy study
Jeschull, F., Pham, H. Q., Ghamlouche, A., Thakur, P. K., Trabesinger, S., & Maibach, J. (2023). Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 2: a photoelectron spectroscopy study. Journal of Physics: Energy, 5(2), 025002 (21 pp.). https://doi.org/10.1088/2515-7655/acbbee |
| Constructing “Li-rich Ni-rich” oxide cathodes for high-energy-density Li-ion batteries
Li, B., Rousse, G., Zhang, L., Avdeev, M., Deschamps, M., Abakumov, A. M., & Tarascon, J. M. (2023). Constructing “Li-rich Ni-rich” oxide cathodes for high-energy-density Li-ion batteries. Energy and Environmental Science, 16(3), 1210-1222. https://doi.org/10.1039/d2ee03969a |
| Insights into the importance of native passivation layer and interface reactivity of metallic lithium by electrochemical impedance spectroscopy
Srout, M., Carboni, M., Gonzalez, J. A., & Trabesinger, S. (2023). Insights into the importance of native passivation layer and interface reactivity of metallic lithium by electrochemical impedance spectroscopy. Small, 19(7), 2206252 (10 pp.). https://doi.org/10.1002/smll.202206252 |
| One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes
Garcia, A., Biswas, S., McNulty, D., Roy, A., Raha, S., Trabesinger, S., … Holmes, J. D. (2022). One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes. ACS Applied Energy Materials, 5(2), 1922-1932. https://doi.org/10.1021/acsaem.1c03404 |
| Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox
Li, B., Kumar, K., Roy, I., Morozov, A. V., Emelyanova, O. V., Zhang, L., … Tarascon, J. M. (2022). Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox. Nature Materials, 21, 1165-1174. https://doi.org/10.1038/s41563-022-01278-2 |
| Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance
Li, L., Wang, J., Zhang, L., Duan, H., Deng, Y., & Chen, G. (2022). Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance. Energy Storage Materials, 45, 1062-1073. https://doi.org/10.1016/j.ensm.2021.10.047 |
| Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode
Pham, H. Q., Kondracki, Ł., Tarik, M., & Trabesinger, S. (2022). Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode. Journal of Power Sources, 527, 231181 (12 pp.). https://doi.org/10.1016/j.jpowsour.2022.231181 |
| Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries
Seidl, L., Grissa, R., Zhang, L., Trabesinger, S., & Battaglia, C. (2022). Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Advanced Materials Interfaces, 9(8), 2100704 (10 pp.). https://doi.org/10.1002/admi.202100704 |
| Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery
Surace, Y., Leanza, D., Mirolo, M., Kondracki, Ł., Vaz, C. A. F., El Kazzi, M., … Trabesinger, S. (2022). Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 44, 156-167. https://doi.org/10.1016/j.ensm.2021.10.013 |
| Identifying pitfalls in lithium metal battery characterization
Winter, E., Schmidt, T. J., & Trabesinger, S. (2022). Identifying pitfalls in lithium metal battery characterization. Batteries and Supercaps, 5(1), e202100145 (13 pp.). https://doi.org/10.1002/batt.202100145 |
| Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm<sup>−2</sup> electrodes
Zhao, W., Zou, L., Zhang, L., Fan, X., Zhang, H., Pagani, F., … Battaglia, C. (2022). Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm−2 electrodes. Small, 18(14), 2107357 (10 pp.). https://doi.org/10.1002/smll.202107357 |
| Prussian blue analogue-sodium-vanadium hexacyanoferrate as a cathode material for Na-Ion batteries
Baster, D., Kondracki, Ł., Oveisi, E., Trabesinger, S., & Girault, H. H. (2021). Prussian blue analogue-sodium-vanadium hexacyanoferrate as a cathode material for Na-Ion batteries. ACS Applied Energy Materials, 4(9), 9758-9765. https://doi.org/10.1021/acsaem.1c01832 |
| Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation
Desai, P., Huang, J., Hijazi, H., Zhang, L., Mariyappan, S., & Tarascon, J. M. (2021). Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation. Advanced Energy Materials, 11(36), 2101490 (13 pp.). https://doi.org/10.1002/aenm.202101490 |
| NASICON-type Li<sub>0.5</sub>M<sub>0.5</sub>Ti<sub>1.5</sub>Fe<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries
Elbouazzaoui, K., Srout, M., Saadoune, I., Bih, L., Ben Youcef, H., Dahbi, M., & Mansori, M. (2021). NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries. Electrochimica Acta, 399, 139438 (12 pp.). https://doi.org/10.1016/j.electacta.2021.139438 |
| Operando monitoring the insulator-metal transition of LiCoO<sub>2</sub>
Flores, E., Mozhzhukhina, N., Aschauer, U., & Berg, E. J. (2021). Operando monitoring the insulator-metal transition of LiCoO2. ACS Applied Materials and Interfaces, 13(19), 22540-22548. https://doi.org/10.1021/acsami.1c04383 |
| Fast-charge limitations for graphite anodes with Si as capacity-enhancing additive
Jeschull, F., & Trabesinger, S. (2021). Fast-charge limitations for graphite anodes with Si as capacity-enhancing additive. Batteries and Supercaps, 4(1), 131-139. https://doi.org/10.1002/batt.202000177 |
| Impacts of fluorinated phosphate additive on interface stabilization of 4.6 V battery cathode
Kim, J., Pham, H. Q., Chung, G. J., Hwang, E. H., Kwon, Y. G., & Song, S. W. (2021). Impacts of fluorinated phosphate additive on interface stabilization of 4.6 V battery cathode. Electrochimica Acta, 367, 137527 (10 pp.). https://doi.org/10.1016/j.electacta.2020.137527 |
| Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox
Li, B., Sougrati, M. T., Rousse, G., Morozov, A. V., Dedryvère, R., Iadecola, A., … Tarascon, J. M. (2021). Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nature Chemistry, 13(11), 1070-1080. https://doi.org/10.1038/s41557-021-00775-2 |