Active Filters

  • (-) PSI Groups = 5421 Membranes and Electrochemical Cells
Search Results 1 - 20 of 33
Select Page
Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers
Babic, U., Tarik, M., Schmidt, T. J., & Gubler, L. (2020). Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers. Journal of Power Sources, 451, 227778 (8 pp.). https://doi.org/10.1016/j.jpowsour.2020.227778
Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications
Ben youcef, H., Henkensmeier, D., Balog, S., Scherer, G. G., & Gubler, L. (2020). Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications. International Journal of Hydrogen Energy, 45(11), 7059-7068. https://doi.org/10.1016/j.ijhydene.2019.12.208
Attack of hydroxyl radicals to α-methyl-styrene sulfonate polymers and cerium-mediated repair <em>via</em> radical cations
Nolte, T. M., Nauser, T., & Gubler, L. (2020). Attack of hydroxyl radicals to α-methyl-styrene sulfonate polymers and cerium-mediated repair via radical cations. Physical Chemistry Chemical Physics, 22(8), 4516-4525. https://doi.org/10.1039/C9CP05454E
Through-plane conductivity of anion exchange membranes at sub-freezing temperatures - hydroxide vs (bi-)carbonate ions
Schwämmlein, J. N., Pham, N. L. T., Mittermeier, T., Egawa, M., Bonorand, L., & Gasteiger, H. A. (2020). Through-plane conductivity of anion exchange membranes at sub-freezing temperatures - hydroxide vs (bi-)carbonate ions. Journal of the Electrochemical Society, 167(8), 084513 (11 pp.). https://doi.org/10.1149/1945-7111/ab8cdf
CO<sub>2</sub>-assisted regeneration of a polymer electrolyte water electrolyzer contaminated with metal ion impurities
Babic, U., Zlobinski, M., Schmidt, T. J., Boillat, P., & Gubler, L. (2019). CO2-assisted regeneration of a polymer electrolyte water electrolyzer contaminated with metal ion impurities. Journal of the Electrochemical Society, 166(10), F610-F619. https://doi.org/10.1149/2.0851910jes
Proton transport in catalyst layers of a polymer electrolyte water electrolyzer: effect of the anode catalyst loading
Babic, U., Nilsson, E., Pătru, A., Schmidt, T. J., & Gubler, L. (2019). Proton transport in catalyst layers of a polymer electrolyte water electrolyzer: effect of the anode catalyst loading. Journal of the Electrochemical Society, 166(4), F214-F220. https://doi.org/10.1149/2.0341904jes
How reliable is the Na metal as a counter electrode in Na-ion half cells?
Conder, J., & Villevieille, C. (2019). How reliable is the Na metal as a counter electrode in Na-ion half cells? Chemical Communications, 55(9), 1275-1278. https://doi.org/10.1039/c8cc07852a
Influence of operating conditions on permeation of CO<sub>2</sub> through the membrane in an automotive PEMFC system
Erbach, S., Pribyl, B., Klages, M., Spitthoff, L., Borah, K., Epple, S., … Schmidt, T. J. (2019). Influence of operating conditions on permeation of CO2 through the membrane in an automotive PEMFC system. International Journal of Hydrogen Energy, 44(25), 12760-12771. https://doi.org/10.1016/j.ijhydene.2018.10.033
Communication—Pt-doped thin membranes for gas crossover suppression in polymer electrolyte water electrolysis
Garbe, S., Babic, U., Nilsson, E., Schmidt, T. J., & Gubler, L. (2019). Communication—Pt-doped thin membranes for gas crossover suppression in polymer electrolyte water electrolysis. Journal of the Electrochemical Society, 166(13), F873-F875. https://doi.org/10.1149/2.0111913jes
Membranes and separators for redox flow batteries
Gubler, L. (2019). Membranes and separators for redox flow batteries. Current Opinion in Electrochemistry, 18, 31-36. https://doi.org/10.1016/j.coelec.2019.08.007
Accelerated stress test method for the assessment of membrane lifetime in vanadium redox flow batteries
Oldenburg, F. J., Ouarga, A., Schmidt, T. J., & Gubler, L. (2019). Accelerated stress test method for the assessment of membrane lifetime in vanadium redox flow batteries. ACS Applied Materials and Interfaces, 11(51), 47917-47928. https://doi.org/10.1021/acsami.9b15736
Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/nafion bilayer membranes
Oldenburg, F. J., Nilsson, E., Schmidt, T. J., & Gubler, L. (2019). Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/nafion bilayer membranes. ChemSusChem, 12(12), 2620-2627. https://doi.org/10.1002/cssc.201900546
Suppressed charge recombination in hematite photoanode via protonation and annealing
Si, W., Haydous, F., Babic, U., Pergolesi, D., & Lippert, T. (2019). Suppressed charge recombination in hematite photoanode via protonation and annealing. ACS Applied Energy Materials, 2(8), 5438-5445. https://doi.org/10.1021/acsaem.9b00420
Communication - contribution of catalyst layer proton transport resistance to voltage loss in polymer electrolyte water electrolyzers
Babic, U., Schmidt, T. J., & Gubler, L. (2018). Communication - contribution of catalyst layer proton transport resistance to voltage loss in polymer electrolyte water electrolyzers. Journal of the Electrochemical Society, 165(15), J3016-J3018. https://doi.org/10.1149/2.0031815jes
Do imaging techniques add real value to the development of better post-Li-ion batteries?
Conder, J., Marino, C., Novák, P., & Villevieille, C. (2018). Do imaging techniques add real value to the development of better post-Li-ion batteries? Journal of Materials Chemistry A, 6(8), 3304-3327. https://doi.org/10.1039/c7ta10622j
Is the Li-S battery an everlasting challenge for <em>operando</em> techniques?
Conder, J., & Villevieille, C. (2018). Is the Li-S battery an everlasting challenge for operando techniques? Current Opinion in Electrochemistry, 9, 33-40. https://doi.org/10.1016/j.coelec.2018.03.029
Antioxidant strategies for hydrocarbon-based membranes
Gubler, L., Nolte, T., & Nauser, T. (2018). Antioxidant strategies for hydrocarbon-based membranes. In D. J. Jones, H. A. Gasteiger, H. Uchida, T. J. Schmidt, F. N. Büchi, K. Swider-Lyons, … Y. Gochi-Ponce (Eds.), ECS transactions: Vol. 86. Polymer electrolyte fuel cells and electrolyzers 18 (PEFC&E18). https://doi.org/10.1149/08613.0369ecst
Hydrocarbon proton exchange membranes
Gubler, L., & Koppenol, W. H. (2018). Hydrocarbon proton exchange membranes. In S. Schlick (Ed.), The chemistry of membranes used in fuel cells: degradation and stabilization. https://doi.org/10.1002/9781119196082.ch5
Prospects for durable hydrocarbon-based fuel cell membranes
Gubler, L., Nauser, T., Coms, F. D., Lai, Y. H., & Gittleman, C. S. (2018). Prospects for durable hydrocarbon-based fuel cell membranes. Journal of the Electrochemical Society, 165(6), F3100-F3103. https://doi.org/10.1149/2.0131806jes
Scaling the graft length and graft density of irradiation-grafted copolymers
Nagy, G., Sproll, V., Gasser, U., Schmidt, T. J., Gubler, L., & Balog, S. (2018). Scaling the graft length and graft density of irradiation-grafted copolymers. Macromolecular Chemistry and Physics, 219(21), 1800311. https://doi.org/10.1002/macp.201800311