Active Filters

  • (-) PSI Groups = 5422 Fuel Cell Systems and Diagnostics
Search Results 1 - 20 of 39
Select Page
High-numerical-aperture macroscope optics for time-resolved experiments
Bührer, M., Stampanoni, M., Rochet, X., Büchi, F., Eller, J., & Marone, F. (2019). High-numerical-aperture macroscope optics for time-resolved experiments. Journal of Synchrotron Radiation, 26(4), 1161-1172. https://doi.org/10.1107/S1600577519004119
A pore-level direct numerical investigation of water evaporation characteristics under air and hydrogen in the gas diffusion layers of polymer electrolyte fuel cells
Safi, M. A., Mantzaras, J., Prasianakis, N. I., Lamibrac, A., & Büchi, F. N. (2019). A pore-level direct numerical investigation of water evaporation characteristics under air and hydrogen in the gas diffusion layers of polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 129, 1250-1262. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042
Design and Commissioning of the Bunch Arrival-Time Monitor for SwissFEL
Arsov, V. R., Buechi, F., Chevtsov, P., Dach, M., Heiniger, M., Hunziker, S., … Schlott, V. (2018). Design and Commissioning of the Bunch Arrival-Time Monitor for SwissFEL. In Z. Liu, S. Lidia, A. McCausey, & V. R. W. Schaa (Eds.), International Beam Instrumentation Conference: Vol. 6. IBIC2017 Proccedings. https://doi.org/10.18429/JACoW-IBIC2017-TUPCC15
Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells
Halter, J., & Marone, F. (2018). Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 165(14), F1176-F1183. https://doi.org/10.1149/2.0501814jes
Ultra-Stable Fiber-Optic Reference Distribution for SwissFEL C-Band Linacs Based on S-Band Radio-Over-Fiber Links and Frequency Doubler / Power Amplifiers
Hunziker, S., Arsov, V. R., Buechi, F., Dach, M., Heiniger, M., Kaiser, M. G., … Schlott, V. (2018). Ultra-Stable Fiber-Optic Reference Distribution for SwissFEL C-Band Linacs Based on S-Band Radio-Over-Fiber Links and Frequency Doubler / Power Amplifiers. In Z. Liu, S. Lidia, A. McCausey, & V. R. W. Schaa (Eds.), International Beam Instrumentation Conference: Vol. 6. IBIC2017 Proccedings. https://doi.org/10.18429/JACoW-IBIC2017-TUPCC17
Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance
Müller, S., Eller, J., Ebner, M., Burns, C., Dahn, J., & Wood, V. (2018). Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance. Journal of the Electrochemical Society, 165(2), A339-A344. https://doi.org/10.1149/2.0311802jes
Review - Identifying critical gaps for polymer electrolyte water electrolysis development
Babic, U., Suermann, M., Büchi, F. N., Gubler, L., & Schmidt, T. J. (2017). Review - Identifying critical gaps for polymer electrolyte water electrolysis development. Journal of the Electrochemical Society, 164(4), F387-F399. https://doi.org/10.1149/2.1441704jes
Operando properties of gas diffusion layers: Saturation and liquid permeability
Eller, J., Roth, J., Marone, F., Stampanoni, M., & Büchi, F. N. (2017). Operando properties of gas diffusion layers: Saturation and liquid permeability. Journal of the Electrochemical Society, 164(2), F115-F126. https://doi.org/10.1149/2.0881702jes
Investigation of gravity-driven drainage and forced convective drying in a macroporous medium using neutron radiography
Lal, S., Poulikakos, L. D., Jerjen, I., Vontobel, P., Partl, M. N., Derome, D., & Carmeliet, J. (2017). Investigation of gravity-driven drainage and forced convective drying in a macroporous medium using neutron radiography. Transport in Porous Media, 118(1), 119-142. https://doi.org/10.1007/s11242-017-0850-z
Wetting and drying in hydrophobic, macroporous asphalt structures
Lal, S., Poulikakos, L., Jerjen, I., Vontobel, P., Partl, M. N., Derome, D., & Carmeliet, J. (2017). Wetting and drying in hydrophobic, macroporous asphalt structures. Construction and Building Materials, 152, 82-95. https://doi.org/10.1016/j.conbuildmat.2017.06.145
Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells
Safi, M. A., Prasianakis, N. I., Mantzaras, J., Lamibrac, A., & Büchi, F. N. (2017). Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 115, 238-249. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
Electrochemical hydrogen compression: Efficient pressurization concept derived from an energetic evaluation
Suermann, M., Kiupel, T., Schmidt, T. J., & Büchi, F. N. (2017). Electrochemical hydrogen compression: Efficient pressurization concept derived from an energetic evaluation. Journal of the Electrochemical Society, 164(12), F1187-F1195. https://doi.org/10.1149/2.1361712jes
High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis
Suermann, M., Pătru, A., Schmidt, T. J., & Büchi, F. N. (2017). High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. International Journal of Hydrogen Energy, 42(17), 12076-12086. https://doi.org/10.1016/j.ijhydene.2017.01.224
Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis
Suermann, M., Takanohashi, K., Lamibrac, A., Schmidt, T. J., & Büchi, F. N. (2017). Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis. Journal of the Electrochemical Society, 164(9), F973-F980. https://doi.org/10.1149/2.13517109jes
Fighting the noise: Towards the limits of subsecond x-ray tomographic microscopy of PEFC
Xu, H., Bührer, M., Marone, F., Schmidt, T. J., Büchi, F. N., & Eller, J. (2017). Fighting the noise: Towards the limits of subsecond x-ray tomographic microscopy of PEFC. ECS transactions: Vol. 80. . https://doi.org/10.1149/08008.0395ecst
Operando X-ray tomographic microscopy imaging of HT-PEFC: A comparative study of phosphoric acid electrolyte migration
Eberhardt, S. H., Marone, F., Stampanoni, M., Büchi, F. N., & Schmidt, T. J. (2016). Operando X-ray tomographic microscopy imaging of HT-PEFC: A comparative study of phosphoric acid electrolyte migration. Journal of the Electrochemical Society, 163(8), F842-F847. https://doi.org/10.1149/2.0801608jes
Advanced water management in PEFCs: Diffusion layers with patterned wettability: II. Measurement of capillary pressure characteristic with neutron and synchrotron imaging
Forner-Cuenca, A., Biesdorf, J., Lamibrac, A., Manzi-Orezzoli, V., Büchi, F. N., Gubler, L., … Boillat, P. (2016). Advanced water management in PEFCs: Diffusion layers with patterned wettability: II. Measurement of capillary pressure characteristic with neutron and synchrotron imaging. Journal of the Electrochemical Society, 163(9), F1038-F1048. https://doi.org/10.1149/2.0511609jes
Characterization of liquid water saturation in gas diffusion layers by X-Ray tomographic microscopy
Lamibrac, A., Roth, J., Toulec, M., Marone, F., Stampanoni, M., & Büchi, F. N. (2016). Characterization of liquid water saturation in gas diffusion layers by X-Ray tomographic microscopy. Journal of the Electrochemical Society, 163(3), F202-F209. https://doi.org/10.1149/2.0401603jes
Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries
Pietsch, P., Hess, M., Ludwig, W., Eller, J., & Wood, V. (2016). Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Scientific Reports, 6, 27994. https://doi.org/10.1038/srep27994
Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes
Pietsch, P., Westhoff, D., Feinauer, J., Eller, J., Marone, F., Stampanoni, M., … Wood, V. (2016). Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes. Nature Communications, 7, 12909. https://doi.org/10.1038/ncomms12909