Active Filters

  • (-) PSI Groups = 5500 Atmospheric Chemistry
Search Results 1 - 20 of 466

Pages

  • RSS Feed
Select Page
Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments
Huang, W., Wu, C., Gao, L., Gramlich, Y., Haslett, S. L., Thornton, J., … Mohr, C. (2024). Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments. Atmospheric Chemistry and Physics, 24(4), 2607-2624. https://doi.org/10.5194/acp-24-2607-2024
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Isabel Moreno, C., Krejci, R., Jaffrezo, J. L., Uzu, G., Alastuey, A., Andrade, M. F., … Laj, P. (2024). Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes. Atmospheric Chemistry and Physics, 24(5), 2837-2860. https://doi.org/10.5194/acp-24-2837-2024
Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation
Li, D., Huang, W., Wang, D., Wang, M., Thornton, J. A., Caudillo, L., … Riva, M. (2024). Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation. Environmental Science and Technology, 58(3), 1601-1614. https://doi.org/10.1021/acs.est.3c07958
Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer
Marten, R., Xiao, M., Wang, M., Kong, W., He, X. C., Stolzenburg, D., … El Haddad, I. (2024). Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer. Environmental Science: Atmospheres, 4(2), 265-274. https://doi.org/10.1039/D3EA00001J
Oxidized organic molecules in the tropical free troposphere over Amazonia
Zha, Q., Aliaga, D., Krejci, R., Sinclair, V. A., Wu, C., Ciarelli, G., … Bianchi, F. (2024). Oxidized organic molecules in the tropical free troposphere over Amazonia. National Science Review, 11(1), nwad138 (11 pp.). https://doi.org/10.1093/nsr/nwad138
Preparation of the experiment: addition of particles
Alfarra, R., Baltensperger, U., Bell, D. M., Danelli, S. G., Di Biagio, C., Doussin, J. F., … Wenger, J. (2023). Preparation of the experiment: addition of particles. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 163-206). https://doi.org/10.1007/978-3-031-22277-1_5
Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol
Bell, D. M., Pospisilova, V., Lopez-Hilfiker, F., Bertrand, A., Xiao, M., Zhou, X., … Slowik, J. G. (2023). Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. Environmental Science: Atmospheres, 3(1), 115-123. https://doi.org/10.1039/d2ea00105e
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Boyer, M., Aliaga, D., Pernov, J. B., Angot, H., Quéléver, L. L. J., Dada, L., … Jokinen, T. (2023). A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Atmospheric Chemistry and Physics, 23(1), 389-415. https://doi.org/10.5194/acp-23-389-2023
Characterization of offline analysis of particulate matter with FIGAERO-CIMS
Cai, J., Daellenbach, K. R., Wu, C., Zheng, Y., Zheng, F., Du, W., … Mohr, C. (2023). Characterization of offline analysis of particulate matter with FIGAERO-CIMS. Atmospheric Measurement Techniques, 16(5), 1147-1165. https://doi.org/10.5194/amt-16-1147-2023
Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban
Casotto, R., Skiba, A., Rauber, M., Strähl, J., Tobler, A., Bhattu, D., … Daellenbach, K. R. (2023). Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban. Science of the Total Environment, 855, 158655 (12 pp.). https://doi.org/10.1016/j.scitotenv.2022.158655
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Caudillo, L., Surdu, M., Lopez, B., Wang, M., Thoma, M., Bräkling, S., … Curtius, J. (2023). An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles. Atmospheric Chemistry and Physics, 23(11), 6613-6631. https://doi.org/10.5194/acp-23-6613-2023
Role of sesquiterpenes in biogenic new particle formation
Dada, L., Stolzenburg, D., Simon, M., Fischer, L., Heinritzi, M., Wang, M., … Kulmala, M. (2023). Role of sesquiterpenes in biogenic new particle formation. Science Advances, 9(36), eadi5297 (15 pp.). https://doi.org/10.1126/sciadv.adi5297
The synergistic role of sulfuric acid, ammonia and organics in particle formation over an agricultural land
Dada, L., Okuljar, M., Shen, J., Olin, M., Wu, Y., Heimsch, L., … Kulmala, M. (2023). The synergistic role of sulfuric acid, ammonia and organics in particle formation over an agricultural land. Environmental Science: Atmospheres, 3(8), 1195-1211. https://doi.org/10.1039/d3ea00065f
The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
Finkenzeller, H., Iyer, S., He, X. C., Simon, M., Koenig, T. K., Lee, C. F., … Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15, 129-135. https://doi.org/10.1038/s41557-022-01067-z
Volatility of aerosol particles from NO<sub>3</sub> oxidation of various biogenic organic precursors
Graham, E. L., Wu, C., Bell, D. M., Bertrand, A., Haslett, S. L., Baltensperger, U., … Mohr, C. (2023). Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors. Atmospheric Chemistry and Physics, 23(13), 7347-7362. https://doi.org/10.5194/acp-23-7347-2023
Revealing the chemical characteristics of Arctic low-level cloud residuals - in situ observations from a mountain site
Gramlich, Y., Siegel, K., Haslett, S. L., Freitas, G., Krejci, R., Zieger, P., & Mohr, C. (2023). Revealing the chemical characteristics of Arctic low-level cloud residuals - in situ observations from a mountain site. Atmospheric Chemistry and Physics, 23(12), 6813-6834. https://doi.org/10.5194/acp-23-6813-2023
Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi
Haslett, S. L., Bell, D. M., Kumar, V., Slowik, J. G., Wang, D. S., Mishra, S., … Mohr, C. (2023). Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi. Atmospheric Chemistry and Physics, 23(16), 9023-9036. https://doi.org/10.5194/acp-23-9023-2023
Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere
He, X. C., Simon, M., Iyer, S., Xie, H. B., Rörup, B., Shen, J., … Kulmala, M. (2023). Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere. Science, 382(6676), 1308-1314. https://doi.org/10.1126/science.adh2526
Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC
Heutte, B., Bergner, N., Beck, I., Angot, H., Dada, L., Quéléver, L. L. J., … Schmale, J. (2023). Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC. Scientific Data, 10(1), 690 (16 pp.). https://doi.org/10.1038/s41597-023-02586-1
Atmospheric new particle formation from the CERN CLOUD experiment
Kirkby, J., Amorim, A., Baltensperger, U., Carslaw, K. S., Christoudias, T., Curtius, J., … Worsnop, D. R. (2023). Atmospheric new particle formation from the CERN CLOUD experiment. Nature Geoscience, 16(11), 948-957. https://doi.org/10.1038/s41561-023-01305-0
 

Pages