Active Filters

  • (-) PSI Groups = 5500 Atmospheric Chemistry
Search Results 1 - 20 of 320

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels
Castro, A., Götschi, T., Achermann, B., Baltensperger, U., Buchmann, B., Felber Dietrich, D., Flückiger, A., Geiser, M., Gälli Purghart, B., Gygax, H., Kutlar Joss, M., Lüthi, L. M., Probst-Hensch, N., Strähl, P., & Künzli, N. (2020). Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels. International Journal of Public Health, 65, 139-148. https://doi.org/10.1007/s00038-019-01324-y
Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers
Esmaeilirad, S., Lai, A., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., Uzu, G., Daellenbach, K., Canonaco, F., Hassankhany, H., Arhami, M., Baltensperger, U., Prévôt, A. S. H., Schauer, J. J., Jaffrezo, J. L., Hosseini, V., & El Haddad, I. (2020). Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 705, 135330 (16 pp.). https://doi.org/10.1016/j.scitotenv.2019.135330
Automated alternating sampling of PM<sub>10</sub> and PM<sub>2.5</sub> with an online XRF spectrometer
Furger, M., Rai, P., Slowik, J. G., Cao, J., Visser, S., Baltensperger, U., & Prévôt, A. S. H. (2020). Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmospheric Environment: X, 5, 100065 (6 pp.). https://doi.org/10.1016/j.aeaoa.2020.100065
Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry
Giannoukos, S., Lee, C. P., Tarik, M., Ludwig, C., Biollaz, S., Lamkaddam, H., Baltensperger, U., Prevot, A. S. H., & Slowik, J. (2020). Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry. Analytical Chemistry, 92(1), 1316-1325. https://doi.org/10.1021/acs.analchem.9b04480
Changes in ozone and PM<sub>2.5</sub> in Europe during the period of 1990–2030: role of reductions in land and ship emissions
Jiang, J., Aksoyoglu, S., Ciarelli, G., Baltensperger, U., & Prévôt, A. S. H. (2020). Changes in ozone and PM2.5 in Europe during the period of 1990–2030: role of reductions in land and ship emissions. Science of the Total Environment, 741, 140467 (14 pp.). https://doi.org/10.1016/j.scitotenv.2020.140467
A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M., Lin, Y., Wiedensohler, A., Schulz, M., Ogren, J. A., Baltensperger, U., Brem, B. T., Gysel-Beer, M., & Zikova, N. (2020). A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 13(8), 4353-4392. https://doi.org/10.5194/amt-13-4353-2020
Online aerosol chemical characterization by extractive electrospray ionization-ultrahigh-resolution mass spectrometry (EESI-Orbitrap)
Lee, C. P., Riva, M., Wang, D., Tomaz, S., Li, D., Perrier, S., Slowik, J. G., Bourgain, F., Schmale, J., Prevot, A. S. H., Baltensperger, U., George, C., & El Haddad, I. (2020). Online aerosol chemical characterization by extractive electrospray ionization-ultrahigh-resolution mass spectrometry (EESI-Orbitrap). Environmental Science and Technology, 54(7), 3871-3880. https://doi.org/10.1021/acs.est.9b07090
Black carbon aerosols in the lower free troposphere are heavily coated in summer but largely uncoated in winter at Jungfraujoch in the Swiss Alps
Motos, G., Corbin, J. C., Schmale, J., Modini, R. L., Bertò, M., Kupiszewski, P., Baltensperger, U., & Gysel-Beer, M. (2020). Black carbon aerosols in the lower free troposphere are heavily coated in summer but largely uncoated in winter at Jungfraujoch in the Swiss Alps. Geophysical Research Letters, 47(14), e2020GL088011 (10 pp.). https://doi.org/10.1029/2020GL088011
Overview: integrative and comprehensive understanding on polar environments (iCUPE) - concept and initial results
Petäjä, T., Duplissy, E. M., Tabakova, K., Schmale, J., Altstädter, B., Ancellet, G., Arshinov, M., Balin, Y., Baltensperger, U., Bange, J., El Haddad, I., Moschos, V., Prévôt, A. S. H., & Lappalainen, H. K. (2020). Overview: integrative and comprehensive understanding on polar environments (iCUPE) - concept and initial results. Atmospheric Chemistry and Physics, 20(14), 8551-8592. https://doi.org/10.5194/acp-20-8551-2020
On the fate of oxygenated organic molecules in atmospheric aerosol particles
Pospisilova, V., Lopez-Hilfiker, F. D., Bell, D. M., El Haddad, I., Mohr, C., Huang, W., Heikkinen, L., Xiao, M., Dommen, J., Prevot, A. S. H., Baltensperger, U., & Slowik, J. G. (2020). On the fate of oxygenated organic molecules in atmospheric aerosol particles. Science Advances, 6(11), eaax8922 (11 pp.). https://doi.org/10.1126/sciadv.aax8922
A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF)
Qi, L., Vogel, A. L., Esmaeilirad, S., Cao, L., Zheng, J., Jaffrezo, J. L., Fermo, P., Kasper-Giebl, A., Daellenbach, K. R., Chen, M., Ge, X., Baltensperger, U., Prévôt, A. S. H., & Slowik, J. G. (2020). A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmospheric Chemistry and Physics, 20(13), 7875-7893. https://doi.org/10.5194/acp-20-7875-2020
Real-time measurement and source apportionment of elements in Delhi's atmosphere
Rai, P., Furger, M., El Haddad, I., Kumar, V., Wang, L., Singh, A., Dixit, K., Bhattu, D., Petit, J. E., Ganguly, D., Rastogi, N., Baltensperger, U., Tripathi, S. N., Slowik, J. G., & Prévôt, A. S. H. (2020). Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 742, 140332 (16 pp.). https://doi.org/10.1016/j.scitotenv.2020.140332
Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland
Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger, U., & Prévôt, A. S. H. (2020). Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmospheric Chemistry and Physics, 20(3), 1657-1674. https://doi.org/10.5194/acp-20-1657-2020
Molecular understanding of new-particle formation from <em>α</em>-pinene between -50 and +25 °C
Simon, M., Dada, L., Henritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kürten, A., Börup, B., He, X. C., Baccarini, A., El-Haddad, I., Frege, C., Hoyle, C. R., Lamkaddam, H., Lee, C. P., Marten, R., Molteni, U., Wang, D. S., … Curtius, J. (2020). Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C. Atmospheric Chemistry and Physics, 20(15), 9183-9207. https://doi.org/10.5194/acp-20-9183-2020
Enhanced growth rate of atmospheric particles from sulfuric acid
Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., Ehrhart, S., Finkenzeller, H., Pichelstorfer, L., Nieminen, T., Xiao, M., Baccarini, A., Dommen, J., El Haddad, I., Lamkaddam, H., Lee, C. P., Marten, R., Baltensperger, U., & Winkler, P. M. (2020). Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 20(12), 7359-7372. https://doi.org/10.5194/acp-20-7359-2020
How does varying water supply affect oxygen isotope variations in needles and tree rings of Scots pine?
Timofeeva, G., Treydte, K., Bugmann, H., Salmon, Y., Rigling, A., Schaub, M., Vollenweider, P., Siegwolf, R., & Saurer, M. (2020). How does varying water supply affect oxygen isotope variations in needles and tree rings of Scots pine? Tree Physiology. https://doi.org/10.1093/treephys/tpaa082
Chemical characterization of PM<sub>2.5</sub> and source apportionment of organic aerosol in New Delhi, India
Tobler, A., Bhattu, D., Canonaco, F., Lalchandani, V., Shukla, A., Thamban, N. M., Mishra, S., Srivastava, A. K., Bisht, D. S., Tiwari, S., Singh, S., Močnik, G., Baltensperger, U., Tripathi, S. N., Slowik, J. G., & Prévôt, A. S. H. (2020). Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Science of the Total Environment, 745, 140924 (12 pp.). https://doi.org/10.1016/j.scitotenv.2020.140924
Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds
Wang, M., Chen, D., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., Ye, P., Vogel, A. L., Mauldin, III, R. L., Amorim, A., Baccarini, A., Baumgartner, B., Brilke, S., Dada, L., Dias, A., Duplissy, J., Finkenzeller, H., Garmash, O., He, X. C., … Donahue, N. M. (2020). Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds. Environmental Science and Technology, 54(13), 7911-7921. https://doi.org/10.1021/acs.est.0c02100
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
Wang, M., Kong, W., Marten, R., He, X. C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Baccarini, A., Bell, D. M., Lamkaddam, H., Lee, C. P., Pospisilova, V., Wang, D. S., Xiao, M., Zhou, X., Dommen, J., … Donahue, N. M. (2020). Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 581(7807), 184-189. https://doi.org/10.1038/s41586-020-2270-4
Size-dependent influence of NO<sub>x</sub> on the growth rates of organic aerosol particles
Yan, C., Nie, W., Vogel, A. L., Dada, L., Lehtipalo, K., Stolzenburg, D., Wagner, R., Rissanen, M. P., Xiao, M., Ahonen, L., Dommen, J., Frege, C., Heyn, C., Hoyle, C. R., Molteni, U., Tröstl, J., Baltensperger, U., & Worsnop, D. R. (2020). Size-dependent influence of NOx on the growth rates of organic aerosol particles. Science Advances, 6(22), eaay4945 (9 pp.). https://doi.org/10.1126/sciadv.aay4945
 

Pages