Active Filters

  • (-) PSI Groups = 6217 Advanced Lithography and Metrology
Search Results 1 - 20 of 153

Pages

  • RSS Feed
Select Page
Unusual high hardness and load-dependent mechanical characteristics of hydrogenated carbon-nitrogen hybrid films
Dwivedi, N., Balasubramanian, K., Sahu, R., Manna, S., Banik, S., Dhand, C., … Sankaranarayanan, S. K. R. S. (2022). Unusual high hardness and load-dependent mechanical characteristics of hydrogenated carbon-nitrogen hybrid films. ACS Applied Materials and Interfaces, 14(17), 20220-20229. https://doi.org/10.1021/acsami.2c01508
Sensitivity enhancement of a high-resolution negative-tone nonchemically amplified metal organic photoresist for extreme ultraviolet lithography
Lewis, S. M., Alty, H. R., Vockenhuber, M., DeRose, G. A., Fernandez-Mato, A., Kazazis, D., … Winpenny, R. E. P. (2022). Sensitivity enhancement of a high-resolution negative-tone nonchemically amplified metal organic photoresist for extreme ultraviolet lithography. Journal of Micro/Nanopatterning, Materials, and Metrology, 21(4), 041404 (9 pp.). https://doi.org/10.1117/1.JMM.21.4.041404
Poly(methyl methacrylate)-based nanofluidic device for rapid and multiplexed serological antibody detection of SARS-CoV-2
Mortelmans, T., Kazazis, D., Padeste, C., Berger, P., Li, X., & Ekinci, Y. (2022). Poly(methyl methacrylate)-based nanofluidic device for rapid and multiplexed serological antibody detection of SARS-CoV-2. ACS Applied Nano Materials, 5(1), 517-526. https://doi.org/10.1021/acsanm.1c03309
Charge configuration memory devices: energy efficiency and switching speed
Mraz, A., Venturini, R., Svetin, D., Sever, V., Mihailovic, I. A., Vaskivskyi, I., … Mihailovic, D. (2022). Charge configuration memory devices: energy efficiency and switching speed. Nano Letters, 22(12), 4814-4821. https://doi.org/10.1021/acs.nanolett.2c01116
Fluorine-rich zinc oxoclusters as extreme ultraviolet photoresists: chemical reactions and lithography performance
Thakur, N., Vockenhuber, M., Ekinci, Y., Watts, B., Giglia, A., Mahne, N., … Brouwer, A. M. (2022). Fluorine-rich zinc oxoclusters as extreme ultraviolet photoresists: chemical reactions and lithography performance. ACS Materials Au, 2(3), 343-355. https://doi.org/10.1021/acsmaterialsau.1c00059
High-efficiency diffraction gratings for EUV and soft x-rays using spin-on-carbon underlayers
Wang, X., Kazazis, D., Tseng, L. T., Robinson, A. P. G., & Ekinci, Y. (2022). High-efficiency diffraction gratings for EUV and soft x-rays using spin-on-carbon underlayers. Nanotechnology, 33(6), 065301 (10 pp.). https://doi.org/10.1088/1361-6528/ac328b
Molecular glass resists based on tetraphenylsilane derivatives: effect of protecting ratios on advanced lithography
Wang, Y., Chen, J., Zeng, Y., Yu, T., Guo, X., Wang, S., … Li, Y. (2022). Molecular glass resists based on tetraphenylsilane derivatives: effect of protecting ratios on advanced lithography. ACS Omega, 7(33), 29266-29273. https://doi.org/10.1021/acsomega.2c03445
From omelet lithography to state-of-the-art performance resists: resist screening with EUV interference lithography
Allenet, T., Mortelmans, T., Vockenhuber, M., Yeh, C. K., & Ekinci, Y. (2021). From omelet lithography to state-of-the-art performance resists: resist screening with EUV interference lithography. In T. Allenet, T. Mortelmans, M. Vockenhuber, C. K. Yeh, Y. Ekinci, K. G. Ronse, … E. Hendrickx (Eds.), Proceedings of SPIE: Vol. 11854. International conference on extreme ultraviolet lithography 2021 (p. 1185417 (8 pp.). https://doi.org/10.1117/12.2600920
Progress in EUV resist screening by interference lithography for high-NA lithography
Allenet, T., Vockenhuber, M., Yeh, C. K., Kazazis, D., Santaclara, J. G., van Lent-Protasova, L., & Ekinci, Y. (2021). Progress in EUV resist screening by interference lithography for high-NA lithography. In T. Allenet, M. Vockenhuber, C. K. Yeh, D. Kazazis, J. Garcia-Santaclara, L. van Lent-Protasova, … E. Hendrickx (Eds.), Proceedings of SPIE: Vol. 11854. International conference on extreme ultraviolet lithography 2021 (p. 118540N (10 pp.). https://doi.org/10.1117/12.2600963
Progress in EUV resist screening towards the deployment of high-NA lithography
Allenet, T., Wang, X., Vockenhuber, M., Yeh, C. K., Mochi, I., Santaclara, J. G., … Ekinci, Y. (2021). Progress in EUV resist screening towards the deployment of high-NA lithography. In N. M. Felix & A. Lio (Eds.), Proceedings of SPIE: Vol. 11609. Extreme ultraviolet (EUV) lithography XII (p. 116090J (10 pp.). https://doi.org/10.1117/12.2583983
Resolution limit and photon flux dependency in EUV ptychography 
Kim, H., Nebling, R., Dejkameh, A., Tao, S., Mochi, I., & Ekinci, Y. (2021). Resolution limit and photon flux dependency in EUV ptychography . In Kim, Nebling, Dejkameh, Tao, Iacopo, Yasin, & S. P. Renwick (Eds.), Proceedings of SPIE: Vol. 11855. Photomask technology 2021 (p. 1185506 (8 pp.). https://doi.org/10.1117/12.2601246
Bottom-up nanofabrication with extreme-ultraviolet light: metal-organic frameworks on patterned monolayers
Lugier, O., Thakur, N., Wu, L., Vockenhuber, M., Ekinci, Y., & Castellanos, S. (2021). Bottom-up nanofabrication with extreme-ultraviolet light: metal-organic frameworks on patterned monolayers. ACS Applied Materials and Interfaces, 13(36), 43777-43786. https://doi.org/10.1021/acsami.1c13667
Chemically-amplified backbone scission (CABS) resist for EUV lithography.
Manouras, T., Kazazis, D., & Ekinci, Y. (2021). Chemically-amplified backbone scission (CABS) resist for EUV lithography. In N. M. Felix & A. Lio (Eds.), Proceedings of SPIE: Vol. 11609. Extreme ultraviolet (EUV) lithography XII (p. 11609H (9 pp.). https://doi.org/10.1117/12.2584085
Contacts and lines SEM image metrology with SMILE
Mochi, I., Vockenhuber, M., Allenet, T., & Ekinci, Y. (2021). Contacts and lines SEM image metrology with SMILE. In S. P. Renwick (Ed.), Proceedings of SPIE: Vol. 11855. Photomask technology 2021 (p. 1185502 (8 pp.). https://doi.org/10.1117/12.2600911
Lensless EUV mask inspection for anamorphic patterns
Mochi, I., Kim, H. S., Dejkameh, A., Nebling, R., Kazazis, D., Locans, U., … Ekinci, Y. (2021). Lensless EUV mask inspection for anamorphic patterns. In N. M. Felix & A. Lio (Eds.), Proceedings of SPIE: Vol. 11609. Extreme ultraviolet (EUV) lithography XII (p. 116090M (6 pp.). https://doi.org/10.1117/12.2584518
Fabrication of high aspect ratio and tilted nanostructures using extreme ultraviolet and soft x-ray interference lithography
Mojarad, N., Kazazis, D., & Ekinci, Y. (2021). Fabrication of high aspect ratio and tilted nanostructures using extreme ultraviolet and soft x-ray interference lithography. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 39(4), 042601 (7 pp.). https://doi.org/10.1116/6.0001089
A priori information in ptychographic image reconstruction for EUV mask metrology
Nebling, R., Mochi, I., Kim, Hsu, Dejkameh, A., Shen, T., & Ekinci, Y. (2021). A priori information in ptychographic image reconstruction for EUV mask metrology. In R. Nebling, I. Mochi, Hsu Kim, A. Dejkameh, T. Shen, Y. Ekinci, … A. Erdmann (Eds.), Proceedings of SPIE: Vol. 11875. Computational optics 2021 (p. 118750M (8 pp.). https://doi.org/10.1117/12.2600233
Ongoing development of ultrafast DUV pulse laser repair for EUV photomasks
Robinson, T., Leclaire, J., Mochi, I., Nebling, R. M., Ekinci, Y., & Kazazis, D. (2021). Ongoing development of ultrafast DUV pulse laser repair for EUV photomasks. In A. Ando (Ed.), Proceedings of SPIE: Vol. 11908. Photomask Japan 2021: XXVII symposium on photomask and next-generation lithography mask technology (p. 119080O (13 pp.). https://doi.org/10.1117/12.2601395
Optimization of nanofluidic devices for geometry‐induced electrostatic trapping
Sharma, D., Lim, R. Y. H., Pfohl, T., & Ekinci, Y. (2021). Optimization of nanofluidic devices for geometry‐induced electrostatic trapping. Particle and Particle Systems Characterization, 38(2), 2000275 (9 pp.). https://doi.org/10.1002/ppsc.202000275
Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping
Sharma, D., Lim, R. Y. H., Pfohl, T., & Ekinci, Y. (2021). Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping. Microsystems and Nanoengineering, 7(1), 46 (12 pp.). https://doi.org/10.1038/s41378-021-00273-y
 

Pages