Active Filters

  • (-) PSI Groups = 6311 Material Science
Search Results 1 - 20 of 263

Pages

  • RSS Feed
Select Page
Band gap narrowing in silane-grafted ZnO nanocrystals. A comprehensive study by wide-angle X-ray total scattering methods
Bertolotti, F., Tǎbǎcaru, A., Muşat, V., Ţigǎu, N., Cervellino, A., Masciocchi, N., & Guagliardi, A. (2021). Band gap narrowing in silane-grafted ZnO nanocrystals. A comprehensive study by wide-angle X-ray total scattering methods. Journal of Physical Chemistry C, 125(8), 4806-4819. https://doi.org/10.1021/acs.jpcc.0c10502
Evolution of the structural, magnetic, and electronic properties of the triple perovskite Ba<sub>3</sub>CoIr<sub>2</sub>O<sub>9</sub>
Garg, C., Roy, D., Lonsky, M., Manuel, P., Cervellino, A., Müller, J., … Nair, S. (2021). Evolution of the structural, magnetic, and electronic properties of the triple perovskite Ba3CoIr2O9. Physical Review B, 103(1), 014437 (11 pp.). https://doi.org/10.1103/PhysRevB.103.014437
Phase coexistence and negative thermal expansion in the triple perovskite iridate Ba<sub>3</sub>CoIr<sub>2</sub>O<sub>9</sub>
Garg, C., Cervellino, A., & Nair, S. (2021). Phase coexistence and negative thermal expansion in the triple perovskite iridate Ba3CoIr2O9. Physical Review Materials, 5(4), 044405 (7 pp.). https://doi.org/10.1103/PhysRevMaterials.5.044405
Magnetic order in the quasi-one-dimensional Ising system RbCoCl<sub>3</sub>
Hänni, N. P., Sheptyakov, D., Mena, M., Hirtenlechner, E., Keller, L., Stuhr, U., … Krämer, K. W. (2021). Magnetic order in the quasi-one-dimensional Ising system RbCoCl3. Physical Review B, 103(9), 094424 (13 pp.). https://doi.org/10.1103/PhysRevB.103.094424
Paired copper monomers in zeolite omega: the active site for methane‐to‐methanol conversion
Knorpp, A. J., Pinar, A. B., Baerlocher, C., McCusker, L. B., Casati, N., Newton, M. A., … van Bokhoven, J. A. (2021). Paired copper monomers in zeolite omega: the active site for methane‐to‐methanol conversion. Angewandte Chemie International Edition, 60(11), 5854-5858. https://doi.org/10.1002/anie.202014030
Mechanism of magnetization reduction in iron oxide nanoparticles
Köhler, T., Feoktystov, A., Petracic, O., Kentzinger, E., Bhatnagar-Schöffmann, T., Feygenson, M., … Brückel, T. (2021). Mechanism of magnetization reduction in iron oxide nanoparticles. Nanoscale, 13(14), 6965-6976. https://doi.org/10.1039/d0nr08615k
Structure of the superconducting high-pressure phase of Sc<sub>3</sub>CoC<sub>4</sub>
Langmann, J., Vöst, M., Schmitz, D., Haas, C., Eickerling, G., Jesche, A., … Scherer, W. (2021). Structure of the superconducting high-pressure phase of Sc3CoC4. Physical Review B, 103(18), 184101 (12 pp.). https://doi.org/10.1103/PhysRevB.103.184101
Unravelling magnetic nanochain formation in dispersion for in vivo applications
Nandakumaran, N., Barnsley, L., Feoktystov, A., Ivanov, S. A., Huber, D. L., Fruhner, L. S., … Feygenson, M. (2021). Unravelling magnetic nanochain formation in dispersion for in vivo applications. Advanced Materials. https://doi.org/10.1002/adma.202008683
The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: experimental investigation and modelling the transformation kinetics
Polatidis, E., Haidemenopoulos, G. N., Krizan, D., Aravas, N., Panzner, T., Šmíd, M., … Van Swygenhoven, H. (2021). The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: experimental investigation and modelling the transformation kinetics. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 800, 140321 (10 pp.). https://doi.org/10.1016/j.msea.2020.140321
Metastability and seeding effects in the mechanochemical hybrid lead(II) iodide formation
Wilke, M., Gawryluk, D. J., & Casati, N. (2021). Metastability and seeding effects in the mechanochemical hybrid lead(II) iodide formation. Chemistry: A European Journal, 27 (13 pp.). https://doi.org/10.1002/chem.202004431
The effect of <em>γ</em>″ and <em>δ</em> phase precipitation on the mechanical properties of Inconel 718 manufactured by selective laser melting: an in situ neutron diffraction and acoustic emission study
Čapek, J., Polatidis, E., Knapek, M., Lyphout, C., Casati, N., Pederson, R., & Strobl, M. (2021). The effect of γ″ and δ phase precipitation on the mechanical properties of Inconel 718 manufactured by selective laser melting: an in situ neutron diffraction and acoustic emission study. JOM: The Journal of the Minerals, Metals and Materials Society, 73(1), 223-232. https://doi.org/10.1007/s11837-020-04463-3
Structure, morphology, and faceting of TiO&lt;sub&gt;2&lt;/sub&gt; photocatalysts by the debye scattering equation method. The P25 and P90 cases of study
Bertolotti, F., Vivani, A., Moscheni, D., Ferri, F., Cervellino, A., Masciocchi, N., & Guagliardi, A. (2020). Structure, morphology, and faceting of TiO2 photocatalysts by the debye scattering equation method. The P25 and P90 cases of study. Nanomaterials, 10(4), 743 (16 pp.). https://doi.org/10.3390/nano10040743
Texture corrections for total scattering functions
Cervellino, A., & Frison, R. (2020). Texture corrections for total scattering functions. Acta Crystallographica Section A: Foundations and Advances, 76(3), 302-317. https://doi.org/10.1107/S2053273320002521
Ferrimagnetic 120° magnetic structure in Cu&lt;sub&gt;2&lt;/sub&gt;OSO&lt;sub&gt;4&lt;/sub&gt;
Favre, V. Y., Tucker, G. S., Ritter, C., Sibille, R., Manuel, P., Frontzek, M. D., … Rønnow, H. M. (2020). Ferrimagnetic 120° magnetic structure in Cu2OSO4. Physical Review B, 102(9), 094422 (9 pp.). https://doi.org/10.1103/PhysRevB.102.094422
Rational design of an unusual 2D-MOF based on Cu(&lt;sub&gt;I&lt;/sub&gt;) and 4-hydroxypyrimidine-5-carbonitrile as linker with conductive capabilities: a theoretical approach based on high-pressure XRD
García-Valdivia, A. A., Romero, F. J., Cepeda, J., Morales, D. P., Casati, N., Mota, A. J., … Rodríguez-Diéguez, A. (2020). Rational design of an unusual 2D-MOF based on Cu(I) and 4-hydroxypyrimidine-5-carbonitrile as linker with conductive capabilities: a theoretical approach based on high-pressure XRD. Chemical Communications, 56(66), 9473-9476. https://doi.org/10.1039/d0cc03564e
Monitoring polymer-assisted mechanochemical cocrystallisation through &lt;em&gt;in situ&lt;/em&gt; X-ray powder diffraction
Germann, L. S., Emmerling, S. T., Wilke, M., Dinnebier, R. E., Moneghini, M., & Hasa, D. (2020). Monitoring polymer-assisted mechanochemical cocrystallisation through in situ X-ray powder diffraction. Chemical Communications, 56(62), 8743-8746. https://doi.org/10.1039/D0CC03460F
A miniaturized selective laser melting device for &lt;em&gt;operando&lt;/em&gt; X-ray diffraction studies
Hocine, S., Van Petegem, S., Frommherz, U., Tinti, G., Casati, N., Grolimund, D., & Van Swygenhoven, H. (2020). A miniaturized selective laser melting device for operando X-ray diffraction studies. Additive Manufacturing, 34, 101194 (9 pp.). https://doi.org/10.1016/j.addma.2020.101194
Operando X-ray diffraction during laser 3D printing
Hocine, S., Van Swygenhoven, H., Van Petegem, S., Chang, C. S. T., Maimaitiyili, T., Tinti, G., … Casati, N. (2020). Operando X-ray diffraction during laser 3D printing. Materials Today, 34, 30-40. https://doi.org/10.1016/j.mattod.2019.10.001
Elucidating the mechanism of Li insertion into Fe&lt;sub&gt;1-&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;S/carbon &lt;em&gt;via in operando&lt;/em&gt; synchrotron studies
Li, C., Sarapulova, A., Pfeifer, K., Luo, X., Casati, N. P. M., Welter, E., … Dsoke, S. (2020). Elucidating the mechanism of Li insertion into Fe1-xS/carbon via in operando synchrotron studies. ACS Applied Materials and Interfaces, 12(47), 52691-52700. https://doi.org/10.1021/acsami.0c15500
The structural origin of enhanced stability of Na&lt;sub&gt;3.32&lt;/sub&gt;Fe&lt;sub&gt;2.106&lt;/sub&gt;Ca&lt;sub&gt;0.234&lt;/sub&gt;(P&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;7&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; cathode for Na-ion batteries
Liu, Y., Wu, Z., Indris, S., Hua, W., Casati, N. P. M., Tayal, A., … Guo, X. (2020). The structural origin of enhanced stability of Na3.32Fe2.106Ca0.234(P2O7)2 cathode for Na-ion batteries. Nano Energy, 79, 105417 (10 pp.). https://doi.org/10.1016/j.nanoen.2020.105417
 

Pages