Active Filters

  • (-) PSI Groups = 1720 Physics Research and Support
  • (-) PSI Authors ≠ Bachtiary, Barbara
Search Results 1 - 20 of 175

Pages

  • RSS Feed
Select Page
Dosimetric and biologic intercomparison between electron and proton FLASH beams
Almeida, A., Togno, M., Ballesteros-Zebadua, P., Franco-Perez, J., Geyer, R., Schaefer, R., … Vozenin, M. C. (2024). Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiotherapy and Oncology, 190, 109953 (8 pp.). https://doi.org/10.1016/j.radonc.2023.109953
Feasibility of the J-PET to monitor the range of therapeutic proton beams
Baran, J., Borys, D., Brzeziński, K., Gajewski, J., Silarski, M., Chug, N., … Ruciński, A. (2024). Feasibility of the J-PET to monitor the range of therapeutic proton beams. Physica Medica, 118, 103301 (9 pp.). https://doi.org/10.1016/j.ejmp.2024.103301
Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow
Bobić, M., Christensen, J. B., Lee, H., Choulilitsa, E., Czerska, K., Togno, M., … Nesteruk, K. P. (2024). Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow. Frontiers in Oncology, 13, 1333039 (11 pp.). https://doi.org/10.3389/fonc.2023.1333039
Technical note: towards more realistic 4DCT(MRI) numerical lung phantoms
Jenny, T., Duetschler, A., Giger, A., Pusterla, O., Safai, S., Weber, D. C., … Zhang, Y. (2024). Technical note: towards more realistic 4DCT(MRI) numerical lung phantoms. Medical Physics, 51(1), 579-590. https://doi.org/10.1002/mp.16451
A review of the clinical introduction of 4D particle therapy research concepts
Knäusl, B., Belotti, G., Bertholet, J., Daartz, J., Flampouri, S., Hoogeman, M., … Czerska, K. (2024). A review of the clinical introduction of 4D particle therapy research concepts. Physics and Imaging in Radiation Oncology, 29, 100535 (11 pp.). https://doi.org/10.1016/j.phro.2024.100535
Technical note: development of a simulation framework, enabling the investigation of locally tuned single energy proton radiography
Lundberg, M., Meijers, A., Souris, K., Deffet, S., Weber, D. C., Lomax, A., & Knopf, A. (2024). Technical note: development of a simulation framework, enabling the investigation of locally tuned single energy proton radiography. Biomedical Physics and Engineering Express, 10(2), 027002 (9 pp.). https://doi.org/10.1088/2057-1976/ad20a8
Automatic lung segmentation of magnetic resonance images: a new approach applied to healthy volunteers undergoing enhanced Deep-Inspiration-Breath-Hold for motion-mitigated 4D proton therapy of lung tumors
Missimer, J. H., Emert, F., Lomax, A. J., & Weber, D. C. (2024). Automatic lung segmentation of magnetic resonance images: a new approach applied to healthy volunteers undergoing enhanced Deep-Inspiration-Breath-Hold for motion-mitigated 4D proton therapy of lung tumors. Physics and Imaging in Radiation Oncology, 29, 100531 (7 pp.). https://doi.org/10.1016/j.phro.2024.100531
A bi-directional beam-line energy ramping for efficient patient treatment with scanned proton therapy
Actis, O., Mayor, A., Meer, D., Rechsteiner, U., Bolsi, A., Lomax, A. J., & Weber, D. C. (2023). A bi-directional beam-line energy ramping for efficient patient treatment with scanned proton therapy. Physics in Medicine and Biology, 68(17), 175001 (12 pp.). https://doi.org/10.1088/1361-6560/acebb2
Large anatomical changes in head-and-neck cancers - a dosimetric comparison of online and offline adaptive proton therapy
Bobić, M., Lalonde, A., Nesteruk, K. P., Lee, H., Nenoff, L., Gorissen, B. L., … Paganetti, H. (2023). Large anatomical changes in head-and-neck cancers - a dosimetric comparison of online and offline adaptive proton therapy. Clinical and Translational Radiation Oncology, 40, 100625 (7 pp.). https://doi.org/10.1016/j.ctro.2023.100625
Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study
Brzeziński, K., Baran, J., Borys, D., Gajewski, J., Chug, N., Coussat, A., … Rucinski, A. (2023). Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study. Physics in Medicine and Biology, 68(14), 145016 (17 pp.). https://doi.org/10.1088/1361-6560/acdd4c
A fast analytical dose calculation approach for MRI-guided proton therapy
Duetschler, A., Winterhalter, C., Meier, G., Safai, S., Weber, D. C., Lomax, A. J., & Zhang, Y. (2023). A fast analytical dose calculation approach for MRI-guided proton therapy. Physics in Medicine and Biology, 68(19), 195020 (17 pp.). https://doi.org/10.1088/1361-6560/acf90d
A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy
Duetschler, A., Huang, L., Fattori, G., Meier, G., Bula, C., Hrbacek, J., … Zhang, Y. (2023). A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy. Physics in Medicine and Biology, 68(11), 115013 (19 pp.). https://doi.org/10.1088/1361-6560/acd518
Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion
Duetschler, A., Prendi, J., Safai, S., Weber, D. C., Lomax, A. J., & Zhang, Y. (2023). Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion. Physics in Medicine and Biology, 68(1), 015015 (17 pp.). https://doi.org/10.1088/1361-6560/aca9b6
Detailed Monte-Carlo characterization of a Faraday cup for proton therapy
Ehwald, J., Togno, M., Lomax, A. J., Weber, D. C., Safai, S., & Winterhalter, C. (2023). Detailed Monte-Carlo characterization of a Faraday cup for proton therapy. Medical Physics, 50(9), 5828-5841. https://doi.org/10.1002/mp.16464
Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study
Giovannelli, A. C., Köthe, A., Safai, S., Meer, D., Zhang, Y., Weber, D. C., … Fattori, G. (2023). Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study. Physics in Medicine and Biology, 68(19), 195013 (10 pp.). https://doi.org/10.1088/1361-6560/acf5c4
Characterization of a Gd-based color CMOS detector for proton dosimetry
Liu, Q., Rohrer, B., Safai, S., Weber, D. C., Lomax, A. J., Chen, Z., & Togno, M. (2023). Characterization of a Gd-based color CMOS detector for proton dosimetry. Radiation Measurements, 164, 106945 (9 pp.). https://doi.org/10.1016/j.radmeas.2023.106945
A novel intensity compensation method to achieve energy independent beam intensity at the patient location for cyclotron based proton therapy facilities
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., & Psoroulas, S. (2023). A novel intensity compensation method to achieve energy independent beam intensity at the patient location for cyclotron based proton therapy facilities. In Journal of physics: conference series: Vol. 2420. 13th international particle accelerator conference (IPAC’22) (p. 012106 (5 pp.). https://doi.org/10.1088/1742-6596/2420/1/012106
A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2023). A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study. In Journal of physics: conference series: Vol. 2420. 13th international particle accelerator conference (IPAC’22) (p. 012107 (6 pp.). https://doi.org/10.1088/1742-6596/2420/1/012107
Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy
Maradia, V., Meer, D., Dölling, R., Weber, D. C., Lomax, A. J., & Psoroulas, S. (2023). Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy. Nature Physics, 19, 1437-1444. https://doi.org/10.1038/s41567-023-02115-2
Momentum cooling can improve transmission rates for proton therapy
Maradia, V., & Psoroulas, S. (2023). Momentum cooling can improve transmission rates for proton therapy. Nature Physics, 19(10), 1398-1399. https://doi.org/10.1038/s41567-023-02116-1
 

Pages