Active Filters

  • (-) PSI Groups = 1723 Dosimetrie und Imaging
Search Results 1 - 20 of 71

Pages

  • RSS Feed
Select Page
An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer
Amstutz, F., Nenoff, L., Albertini, F., Ribeiro, C. O., Knopf, A. C., Unkelbach, J., … Zhang, Y. (2021). An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer. Physics in Medicine and Biology, 66(10), 105007 (12 pp.). https://doi.org/10.1088/1361-6560/abf8f5
Al<sub>2</sub>O<sub>3</sub>:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry
Christensen, J. B., Togno, M., Nesteruk, K. P., Psoroulas, S., Meer, D., Weber, D. C., … Safai, S. (2021). Al2O3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Physics in Medicine and Biology, 66(8), 085003 (11 pp.). https://doi.org/10.1088/1361-6560/abe554
Technical assessment of the NDI Polaris Vega optical tracking system
Fattori, G., Lomax, A. J., Weber, D. C., & Safai, S. (2021). Technical assessment of the NDI Polaris Vega optical tracking system. Radiation Oncology, 16(1), 87 (4 pp.). https://doi.org/10.1186/s13014-021-01804-7
Liver-ultrasound-guided lung tumour tracking for scanned proton therapy: a feasibility study
Krieger, M., Giger, A., Jud, C., Duetschler, A., Salomir, R., Bieri, O., … Zhang, Y. (2021). Liver-ultrasound-guided lung tumour tracking for scanned proton therapy: a feasibility study. Physics in Medicine and Biology, 66(3), 035011 (14 pp.). https://doi.org/10.1088/1361-6560/abcde6
Combining clinical and dosimetric features in a PBS proton therapy cohort to develop a NTCP model for radiation-induced optic neuropathy
Köthe, A., van Luijk, P., Safai, S., Kountouri, M., Lomax, A. J., Weber, D. C., & Fattori, G. (2021). Combining clinical and dosimetric features in a PBS proton therapy cohort to develop a NTCP model for radiation-induced optic neuropathy. International Journal of Radiation Oncology Biology Physics, 110(2), 587-595. https://doi.org/10.1016/j.ijrobp.2020.12.052
Dosimetric influence of deformable image registration uncertainties on propagated structures for online daily adaptive proton therapy of lung cancer patients
Nenoff, L., Matter, M., Amaya, E. J., Josipovic, M., Knopf, A. C., Lomax, A. J., … Albertini, F. (2021). Dosimetric influence of deformable image registration uncertainties on propagated structures for online daily adaptive proton therapy of lung cancer patients. Radiotherapy and Oncology, 159, 136-143. https://doi.org/10.1016/j.radonc.2021.03.021
A static beam delivery device for fast scanning proton arc-therapy
Nesteruk, K. P., Bolsi, A., Lomax, A. J., Meer, D., Van De Water, S., & Schippers, J. M. (2021). A static beam delivery device for fast scanning proton arc-therapy. Physics in Medicine and Biology, 66(5), 055018 (15 pp.). https://doi.org/10.1088/1361-6560/abe02b
Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH)
Nesteruk, K. P., Togno, M., Grossmann, M., Lomax, A. J., Weber, D. C., Schippers, J. M., … Psoroulas, S. (2021). Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Medical Physics. https://doi.org/10.1002/mp.14933
Potential and pitfalls of 1.5T MRI imaging for target volume definition in ocular proton therapy
Via, R., Hennings, F., Pica, A., Fattori, G., Beer, J., Peroni, M., … Hrbacek, J. (2021). Potential and pitfalls of 1.5T MRI imaging for target volume definition in ocular proton therapy. Radiotherapy and Oncology, 154, 53-59. https://doi.org/10.1016/j.radonc.2020.08.023
Online daily adaptive proton therapy
Albertini, F., Matter, M., Nenoff, L., Zhang, Y., & Lomax, A. (2020). Online daily adaptive proton therapy. British Journal of Radiology, 93(1107), 20190594 (11 pp.). https://doi.org/10.1259/bjr.20190594
From medical imaging to radiomics: role of data science for advancing precision health
Capobianco, E., & Dominietto, M. (2020). From medical imaging to radiomics: role of data science for advancing precision health. Journal of Personalized Medicine, 10(1), 15 (13 pp.). https://doi.org/10.3390/jpm10010015
Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy
Colvill, E., Krieger, M., Bosshard, P., Steinacher, P., Rohrer Schnidrig, B. A., Parkel, T., … Fattori, G. (2020). Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy. Physics in Medicine and Biology, 65(7), 07NT02 (10 pp.). https://doi.org/10.1088/1361-6560/ab7508
Role of complex networks for integrating medical images and radiomic features of intracranial ependymoma patients in response to proton radiotherapy
Dominietto, M., Pica, A., Safai, S., Lomax, A. J., Weber, D. C., & Capobianco, E. (2020). Role of complex networks for integrating medical images and radiomic features of intracranial ependymoma patients in response to proton radiotherapy. Frontiers in Medicine, 6, 333 (13 pp.). https://doi.org/10.3389/fmed.2019.00333
Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers
Fattori, G., Hrbacek, J., Regele, H., Bula, C., Mayor, A., Danuser, S., … Safai, S. (2020). Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers. Zeitschrift für Medizinische Physik. https://doi.org/10.1016/j.zemedi.2020.07.001
The potential of Gantry beamline large momentum acceptance for real time tumour tracking in pencil beam scanning proton therapy
Fattori, G., Zhang, Y., Meer, D., Weber, D. C., Lomax, A. J., & Safai, S. (2020). The potential of Gantry beamline large momentum acceptance for real time tumour tracking in pencil beam scanning proton therapy. Scientific Reports, 10(1), 15325 (13 pp.). https://doi.org/10.1038/s41598-020-71821-1
Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities
Gerlach, S., Pinto, M., Kurichiyanil, N., Grau, C., Hérault, J., Hillbrand, M., … Parodi, K. (2020). Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Physics in Medicine and Biology, 65(24), 245045 (18 pp.). https://doi.org/10.1088/1361-6560/abc832
Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy
Giger, A., Krieger, M., Jud, C., Duetschler, A., Salomir, R., Bieri, O., … Cattin, P. C. (2020). Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. Physics in Medicine and Biology, 65(23), 235050 (12 pp.). https://doi.org/10.1088/1361-6560/abaa26
Impact of internal target volume definition for pencil beam scanned proton treatment planning in the presence of respiratory motion variability for lung cancer: a proof of concept
Krieger, M., Giger, A., Salomir, R., Bieri, O., Celicanin, Z., Cattin, P. C., … Zhang, Y. (2020). Impact of internal target volume definition for pencil beam scanned proton treatment planning in the presence of respiratory motion variability for lung cancer: a proof of concept. Radiotherapy and Oncology, 145, 154-161. https://doi.org/10.1016/j.radonc.2019.12.001
Update on yesterday&#039;s dose – use of delivery log-files for daily adaptive proton therapy (DAPT)
Matter, M., Nenoff, L., Marc, L., Weber, D. C., Lomax, A. J., & Albertini, F. (2020). Update on yesterday's dose – use of delivery log-files for daily adaptive proton therapy (DAPT). Physics in Medicine and Biology, 65(19), 195011 (14 pp.). https://doi.org/10.1088/1361-6560/ab9f5e
Daily adaptive proton therapy: is it appropriate to use analytical dose calculations for plan adaption?
Nenoff, L., Matter, M., Jarhall, A. G., Winterhalter, C., Gorgisyan, J., Josipovic, M., … Albertini, F. (2020). Daily adaptive proton therapy: is it appropriate to use analytical dose calculations for plan adaption? International Journal of Radiation Oncology Biology Physics, 107(4), 747-755. https://doi.org/10.1016/j.ijrobp.2020.03.036
 

Pages