Active Filters

  • (-) PSI Groups = 1724 Technological Development
  • (-) PSI Authors ≠ Adelmann, Andreas
Search Results 1 - 20 of 59
Select Page
Calibration assessment of the PSI proton therapy Gantry 2 scanning system after 10 years of operation
Actis, O., Meer, D., Bula, C., & Mayor, A. (2024). Calibration assessment of the PSI proton therapy Gantry 2 scanning system after 10 years of operation. In R. W. Assmann (Ed.), Journal of physics: conference series: Vol. 2687. International particle accelerator conference (p. 092008 (4 pp.). https://doi.org/10.1088/1742-6596/2687/9/092008
Dosimetric and biologic intercomparison between electron and proton FLASH beams
Almeida, A., Togno, M., Ballesteros-Zebadua, P., Franco-Perez, J., Geyer, R., Schaefer, R., … Vozenin, M. C. (2024). Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiotherapy and Oncology, 190, 109953 (8 pp.). https://doi.org/10.1016/j.radonc.2023.109953
A bi-directional beam-line energy ramping for efficient patient treatment with scanned proton therapy
Actis, O., Mayor, A., Meer, D., Rechsteiner, U., Bolsi, A., Lomax, A. J., & Weber, D. C. (2023). A bi-directional beam-line energy ramping for efficient patient treatment with scanned proton therapy. Physics in Medicine and Biology, 68(17), 175001 (12 pp.). https://doi.org/10.1088/1361-6560/acebb2
A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy
Duetschler, A., Huang, L., Fattori, G., Meier, G., Bula, C., Hrbacek, J., … Zhang, Y. (2023). A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy. Physics in Medicine and Biology, 68(11), 115013 (19 pp.). https://doi.org/10.1088/1361-6560/acd518
Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study
Giovannelli, A. C., Köthe, A., Safai, S., Meer, D., Zhang, Y., Weber, D. C., … Fattori, G. (2023). Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study. Physics in Medicine and Biology, 68(19), 195013 (10 pp.). https://doi.org/10.1088/1361-6560/acf5c4
A novel intensity compensation method to achieve energy independent beam intensity at the patient location for cyclotron based proton therapy facilities
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., & Psoroulas, S. (2023). A novel intensity compensation method to achieve energy independent beam intensity at the patient location for cyclotron based proton therapy facilities. In Journal of physics: conference series: Vol. 2420. 13th international particle accelerator conference (IPAC’22) (p. 012106 (5 pp.). https://doi.org/10.1088/1742-6596/2420/1/012106
A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2023). A novel method of emittance matching to increase beam transmission for cyclotron-based proton therapy facilities: simulation study. In Journal of physics: conference series: Vol. 2420. 13th international particle accelerator conference (IPAC’22) (p. 012107 (6 pp.). https://doi.org/10.1088/1742-6596/2420/1/012107
Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy
Maradia, V., Meer, D., Dölling, R., Weber, D. C., Lomax, A. J., & Psoroulas, S. (2023). Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy. Nature Physics, 19, 1437-1444. https://doi.org/10.1038/s41567-023-02115-2
Momentum cooling can improve transmission rates for proton therapy
Maradia, V., & Psoroulas, S. (2023). Momentum cooling can improve transmission rates for proton therapy. Nature Physics, 19(10), 1398-1399. https://doi.org/10.1038/s41567-023-02116-1
Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates
Motta, S., Christensen, J. B., Togno, M., Schäfer, R., Safai, S., Lomax, A. J., & Yukihara, E. G. (2023). Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates. Physics in Medicine and Biology, 68(4), 045017 (13 pp.). https://doi.org/10.1088/1361-6560/acb634
<em>In situ </em>correction of recombination effects in ultra-high dose rate irradiations with protons
Schaefer, R., Psoroulas, S., & Weber, D. C. (2023). In situ correction of recombination effects in ultra-high dose rate irradiations with protons. Physics in Medicine and Biology, 68(10), 105013 (11 pp.). https://doi.org/10.1088/1361-6560/accf5c
Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers
Fattori, G., Hrbacek, J., Regele, H., Bula, C., Mayor, A., Danuser, S., … Safai, S. (2022). Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers. Zeitschrift für Medizinische Physik, 3(1), 52-62. https://doi.org/10.1016/j.zemedi.2020.07.001
Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
Gerken, L. R. H., Gogos, A., Starsich, F. H. L., David, H., Gerdes, M. E., Schiefer, H., … Herrmann, I. K. (2022). Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nature Communications, 13(1), 3248 (14 pp.). https://doi.org/10.1038/s41467-022-30982-5
Beam properties within the momentum acceptance of a clinical gantry beamline for proton therapy
Giovannelli, A. C., Maradia, V., Meer, D., Safai, S., Psoroulas, S., Togno, M., … Fattori, G. (2022). Beam properties within the momentum acceptance of a clinical gantry beamline for proton therapy. Medical Physics, 49(3), 1417-1431. https://doi.org/10.1002/mp.15449
Optimal configuration of proton-therapy accelerators for relative-stopping-power resolution in proton computed tomography
Herrod, A. T., Winter, A., Psoroulas, S., Price, T., Owen, H. L., Appleby, R. B., … Esposito, M. (2022). Optimal configuration of proton-therapy accelerators for relative-stopping-power resolution in proton computed tomography. Physical Review Applied, 18(1), 014020 (6 pp.). https://doi.org/10.1103/PhysRevApplied.18.014020
Comparing radiolytic production of H<sub>2</sub>O<sub>2</sub> and development of zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams
Kacem, H., Psoroulas, S., Boivin, G., Folkerts, M., Grilj, V., Lomax, T., … Vozenin, M. C. (2022). Comparing radiolytic production of H2O2 and development of zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams. Radiotherapy and Oncology, 175, 197-202. https://doi.org/10.1016/j.radonc.2022.07.011
To FLASH or to fractionate? That is the question
Lomax, T., & Psoroulas, S. (2022). To FLASH or to fractionate? That is the question. Zeitschrift für Medizinische Physik, 32(4), 387-390. https://doi.org/10.1016/j.zemedi.2022.10.007
Application of a scattering foil to increase beam transmission for cyclotron based proton therapy facilities
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2022). Application of a scattering foil to increase beam transmission for cyclotron based proton therapy facilities. Frontiers in Physics, 10, 919787 (9 pp.). https://doi.org/10.3389/fphy.2022.919787
Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry
Maradia, V., Giovannelli, A. C., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2022). Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry. Medical Physics, 49(4), 2183-2192. https://doi.org/10.1002/mp.15505
Ultra-fast pencil beam scanning proton therapy for locally advanced non-small-cell lung cancers: field delivery within a single breath-hold
Maradia, V., van de Water, S., Meer, D., Weber, D. C., Lomax, A. J., & Psoroulas, S. (2022). Ultra-fast pencil beam scanning proton therapy for locally advanced non-small-cell lung cancers: field delivery within a single breath-hold. Radiotherapy and Oncology, 174, 23-29. https://doi.org/10.1016/j.radonc.2022.06.018