Active Filters

  • (-) PSI Groups = 5300 Thermal Processes and Combustion
Search Results 1 - 20 of 32
Select Page
Insights on the interaction of serpentine channels and gas diffusion layer in an operating polymer electrolyte fuel cell: numerical modeling across scales
Khatoonabadi, M., Safi, M. A., Prasianakis, N. I., Roth, J., Mantzaras, J., Kirov, N., & Büchi, F. N. (2021). Insights on the interaction of serpentine channels and gas diffusion layer in an operating polymer electrolyte fuel cell: numerical modeling across scales. International Journal of Heat and Mass Transfer, 181, 121859 (13 pp.). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121859
Heterogeneous and homogeneous combustion of fuel-lean C<sub>3</sub>H<sub>8</sub>/O<sub>2</sub>/N<sub>2</sub> mixtures over rhodium at pressures up to 6 bar
Mantzaras, J., Sui, R., Law, C. K., & Bombach, R. (2021). Heterogeneous and homogeneous combustion of fuel-lean C3H8/O2/N2 mixtures over rhodium at pressures up to 6 bar. Proceedings of the Combustion Institute, 38(4), 6473-6482. https://doi.org/10.1016/j.proci.2020.06.029
Homogeneous ignition of H<sub>2</sub>/CO/O<sub>2</sub>/N<sub>2</sub> mixtures over palladium at pressures up to 8 bar
Sui, R., Mantzaras, J., Law, C. K., Bombach, R., & Khatoonabadi, M. (2021). Homogeneous ignition of H2/CO/O2/N2 mixtures over palladium at pressures up to 8 bar. Proceedings of the Combustion Institute, 38(4), 6583-6591. https://doi.org/10.1016/j.proci.2020.06.262
Coupled reaction mechanism reduction for the hetero-/homogeneous combustion of syngas over platinum
Sui, R., Liang, W., Mantzaras, J., & Law, C. K. (2020). Coupled reaction mechanism reduction for the hetero-/homogeneous combustion of syngas over platinum. Combustion and Flame, 214, 37-46. https://doi.org/10.1016/j.combustflame.2019.12.020
H&lt;sub&gt;2&lt;/sub&gt; and CO heterogeneous kinetic coupling during combustion of H&lt;sub&gt;2&lt;/sub&gt;/CO/O&lt;sub&gt;2&lt;/sub&gt;/N&lt;sub&gt;2&lt;/sub&gt; mixtures over rhodium
Sui, R., Mantzaras, J., & Bombach, R. (2019). H2 and CO heterogeneous kinetic coupling during combustion of H2/CO/O2/N2 mixtures over rhodium. Combustion and Flame, 202, 292-302. https://doi.org/10.1016/j.combustflame.2019.01.021
Hetero-/homogeneous combustion of fuel-lean CH&lt;sub&gt;4&lt;/sub&gt;/O&lt;sub&gt;2&lt;/sub&gt;/N&lt;sub&gt;2&lt;/sub&gt; mixtures over PdO at elevated pressures
Sui, R., Mantzaras, J., Es-sebbar, Etouhami, & Bombach, R. (2019). Hetero-/homogeneous combustion of fuel-lean CH4/O2/N2 mixtures over PdO at elevated pressures. Proceedings of the Combustion Institute, 37(4), 5465-5472. https://doi.org/10.1016/j.proci.2018.05.112
Catalytic ignition and pressure dependence of methane/air combustion over palladium oxide
Sui, R., Liang, W., Mantzaras, J., & Law, C. K. (2018). Catalytic ignition and pressure dependence of methane/air combustion over palladium oxide. In Proceedings of the 2018 spring ESSCI meeting. Talks 2A01-2A17 (p. 2A03 (6 pp.). The Pennsylvania State University.
Experimental and numerical investigation of fuel-lean H&lt;sub&gt;2&lt;/sub&gt;/CO/air and H&lt;sub&gt;2&lt;/sub&gt;/CH4/air catalytic microreactors
Sui, R., Es-sebbar, Etouhami, Mantzaras, J., & Prasianakis, N. I. (2018). Experimental and numerical investigation of fuel-lean H2/CO/air and H2/CH4/air catalytic microreactors. Combustion Science and Technology, 190(2), 336-362. https://doi.org/10.1080/00102202.2017.1391231
Glass melting using concentrated solar thermal energy
Ahmad, S. Q. S., Wieckert, C., & Hand, R. J. (2017). Glass melting using concentrated solar thermal energy. Glass Technology - European Journal of Glass Science and Technology Part A, 58(2), 41-48. https://doi.org/10.13036/17533546.58.2.012
Three-dimensional direct numerical simulations of turbulent fuel-lean H&lt;sub&gt;2&lt;/sub&gt;/air hetero-/homogeneous combustion over Pt with detailed chemistry&lt;br /&gt;  
Arani, B. O., Frouzakis, C. E., Mantzaras, J., & Boulouchos, K. (2017). Three-dimensional direct numerical simulations of turbulent fuel-lean H2/air hetero-/homogeneous combustion over Pt with detailed chemistry
 . Proceedings of the Combustion Institute, 36(3), 4355-4363. https://doi.org/10.1016/j.proci.2016.05.009
Potentials, costs and environmental assessment of electricity generation technologies
Bauer, C., Hirschberg, S., Bäuerle, Y., Biollaz, S., Calbry-Muzyka, A., Cox, B., … Tran, M. Q. (2017). Potentials, costs and environmental assessment of electricity generation technologies. Paul Scherrer Institut.
Shock tube ignition delay data affected by localized ignition phenomena
Javed, T., Badra, J., Jaasim, M., Es-Sebbar, E., Labastida, M. F., Chung, S. H., … Farooq, A. (2017). Shock tube ignition delay data affected by localized ignition phenomena. Combustion Science and Technology, 189(7), 1138-1161. https://doi.org/10.1080/00102202.2016.1272599
A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute
Koepf, E., Alxneit, I., Wieckert, C., & Meier, A. (2017). A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Applied Energy, 188, 620-651. https://doi.org/10.1016/j.apenergy.2016.11.088
A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock
Müller, F., Poživil, P., van Eyk, P. J., Villarrazo, A., Haueter, P., Wieckert, C., … Steinfeld, A. (2017). A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock. Fuel, 193, 432-443. https://doi.org/10.1016/j.fuel.2016.12.036
Benchmark computations for 3D two-phase flows: a coupled lattice Boltzmann-level set study
Safi, M. A., Prasianakis, N., & Turek, S. (2017). Benchmark computations for 3D two-phase flows: a coupled lattice Boltzmann-level set study. Computers and Mathematics with Applications, 73(3), 520-536. https://doi.org/10.1016/j.camwa.2016.12.014
Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells
Safi, M. A., Prasianakis, N. I., Mantzaras, J., Lamibrac, A., & Büchi, F. N. (2017). Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 115, 238-249. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050
A comparative experimental and numerical investigation of the heterogeneous and homogeneous combustion characteristics of fuel-rich methane mixtures over rhodium and platinum
Sui, R., Mantzaras, J., & Bombach, R. (2017). A comparative experimental and numerical investigation of the heterogeneous and homogeneous combustion characteristics of fuel-rich methane mixtures over rhodium and platinum. Proceedings of the Combustion Institute, 36(3), 4313-4320. https://doi.org/10.1016/j.proci.2016.06.001
Hetero-/homogeneous combustion of fuel-lean methane/oxygen/nitrogen mixtures over rhodium at pressures up to 12 bar
Sui, R., Mantzaras, J., Bombach, R., & Denisov, A. (2017). Hetero-/homogeneous combustion of fuel-lean methane/oxygen/nitrogen mixtures over rhodium at pressures up to 12 bar. Proceedings of the Combustion Institute, 36(3), 4321-4328. https://doi.org/10.1016/j.proci.2016.06.003
Homogeneous ignition during fuel-rich H&lt;sub&gt;2&lt;/sub&gt;/O&lt;sub&gt;2&lt;/sub&gt;/N&lt;sub&gt;2&lt;/sub&gt; combustion in platinum-coated channels at elevated pressures
Sui, R., Es-sebbar, Etouhami, Mantzaras, J., & Bombach, R. (2017). Homogeneous ignition during fuel-rich H2/O2/N2 combustion in platinum-coated channels at elevated pressures. Combustion and Flame, 180, 184-195. https://doi.org/10.1016/j.combustflame.2017.02.033
Impact of gaseous chemistry in H&lt;sub&gt;2&lt;/sub&gt;-O&lt;sub&gt;2&lt;/sub&gt;-N&lt;sub&gt;2&lt;/sub&gt; combustion over platinum at fuel-lean stoichiometries and pressures of 1.0-3.5 bar
Sui, R., Mantzaras, J., Es-sebbar, Etouhami, Safi, M. A., & Bombach, R. (2017). Impact of gaseous chemistry in H2-O2-N2 combustion over platinum at fuel-lean stoichiometries and pressures of 1.0-3.5 bar. Energy and Fuels, 31(10), 11448-11459. https://doi.org/10.1021/acs.energyfuels.7b02011