| Elucidation of a nutlin-derivative-HDM2 complex structure at the interaction site by NMR molecular replacement: a straightforward derivation
Mertens, V., Abi Saad, M. J., Coudevylle, N., Wälti, M. A., Finke, A., Marsh, M., & Orts, J. (2022). Elucidation of a nutlin-derivative-HDM2 complex structure at the interaction site by NMR molecular replacement: a straightforward derivation. Journal of Magnetic Resonance Open, 10-11, 100032 (5 pp.). https://doi.org/10.1016/j.jmro.2022.100032 |
| Crystal structure of the pheromone E<em>r</em>-13 from the ciliate <em>Euplotes raikovi</em>, with implications for a protein-protein association model in pheromone/receptor interactions
Pedrini, B., Finke, A. D., Marsh, M., Luporini, P., Vallesi, A., & Alimenti, C. (2022). Crystal structure of the pheromone Er-13 from the ciliate Euplotes raikovi, with implications for a protein-protein association model in pheromone/receptor interactions. Journal of Structural Biology, 214(1), 107812 (10 pp.). https://doi.org/10.1016/j.jsb.2021.107812 |
| The TELL automatic sample changer for macromolecular crystallography
Martiel, I., Buntschu, D., Meier, N., Gobbo, A., Panepucci, E., Schneider, R., … Wang, M. (2020). The TELL automatic sample changer for macromolecular crystallography. Journal of Synchrotron Radiation, 27, 860-863. https://doi.org/10.1107/S1600577520002416 |
| Structural basis of a novel repressor, SghR, controlling <em>Agrobacterium</em> infection by cross-talking to plants
Ye, F., Wang, C., Fu, Q., Yan, X. F., Bharath, S. R., Casanas, A., … Gao, Y. G. (2020). Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants. Journal of Biological Chemistry, 295(34), 12290-12304. https://doi.org/10.1074/jbc.RA120.012908 |
| Automated data collection and real-time data analysis suite for serial synchrotron crystallography
Basu, S., Kaminski, J. W., Panepucci, E., Huang, C. Y., Warshamanage, R., Wang, M., & Wojdyla, J. A. (2019). Automated data collection and real-time data analysis suite for serial synchrotron crystallography. Journal of Synchrotron Radiation, 26(1), 244-252. https://doi.org/10.1107/S1600577518016570 |
| Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis
El Ghachi, M., Howe, N., Huang, C. Y., Olieric, V., Warshamanage, R., Touzé, T., … Caffrey, M. (2018). Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis. Nature Communications, 9(1), 1078 (13 pp.). https://doi.org/10.1038/s41467-018-03477-5 |
| Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease
Ciolek, J., Reinfrank, H., Quinton, L., Viengchareun, S., Stura, E. A., Vera, L., … Gilles, N. (2017). Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(27), 7154-7159. https://doi.org/10.1073/pnas.1620454114 |
| Serial synchrotron X-ray crystallography (SSX)
Diederichs, K., & Wang, M. (2017). Serial synchrotron X-ray crystallography (SSX). In A. Wlodawer, Z. Dauter, & M. Jaskolski (Eds.), Methods in molecular biology: Vol. 1607. Protein crystallography. Methods and protocols (pp. 239-272). https://doi.org/10.1007/978-1-4939-7000-1_10 |
| Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser
Gati, C., Oberthuer, D., Yefanov, O., Bunker, R. D., Stellato, F., Chiu, E., … Chapman, H. N. (2017). Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(9), 2247-2252. https://doi.org/10.1073/pnas.1609243114 |
| Crystal structure of 2C helicase from enterovirus 71
Guan, H., Tian, J., Qin, B., Wojdyla, J. A., Wang, B., Zhao, Z., … Cui, S. (2017). Crystal structure of 2C helicase from enterovirus 71. Science Advances, 3(4), e1602573 (9 pp.). https://doi.org/10.1126/sciadv.1602573 |
| Crystal structure of Middle East respiratory syndrome coronavirus helicase
Hao, W., Wojdyla, J. A., Zhao, R., Han, R., Das, R., Zlatev, I., … Cui, S. (2017). Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathogens, 13(6), e1006474 (19 pp.). https://doi.org/10.1371/journal.ppat.1006474 |
| Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody
Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., … Cherezov, V. (2017). Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(31), 8223-8228. https://doi.org/10.1073/pnas.1700891114 |
| Engineering proximal <em>vs.</em> distal heme-NO coordination <em>via</em> dinitrosyl dynamics: implications for NO sensor design
Kekilli, D., Petersen, C. A., Pixton, D. A., Ghafoor, D. D., Abdullah, G. H., Dworkowski, F. S. N., … Hough, M. A. (2017). Engineering proximal vs. distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chemical Science, 8(3), 1986-1994. https://doi.org/10.1039/c6sc04190f |
| Photoreduction and validation of haem-ligand intermediate states in protein crystals by <em>in situ</em> single-crystal spectroscopy and diffraction
Kekilli, D., Moreno-Chicano, T., Chaplin, A. K., Horrell, S., Dworkowski, F. S. N., Worrall, J. A. R., … Hough, M. A. (2017). Photoreduction and validation of haem-ligand intermediate states in protein crystals by in situ single-crystal spectroscopy and diffraction. IUCrJ, 4, 263-270. https://doi.org/10.1107/S2052252517002159 |
| In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction
Kenel, C., Grolimund, D., Li, X., Panepucci, E., Samson, V. A., Ferreira Sanchez, D., … Leinenbach, C. (2017). In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction. Scientific Reports, 7, 16358 (10 pp.). https://doi.org/10.1038/s41598-017-16760-0 |
| SwissFEL: the Swiss X-ray free electron laser
Milne, C. J., Schietinger, T., Aiba, M., Alarcon, A., Alex, J., Anghel, A., … Braun, H. H. (2017). SwissFEL: the Swiss X-ray free electron laser. Applied Sciences, 7(7), 720 (57 pp.). https://doi.org/10.3390/app7070720 |
| Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP
Nöll, A., Thomas, C., Herbring, V., Zollmann, T., Barth, K., Mehdipour, A. R., … Tampé, R. (2017). Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(4), E438-E447. https://doi.org/10.1073/pnas.1620009114 |
| Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers
Opara, N., Martiel, I., Arnold, S. A., Braun, T., Stahlberg, H., Makita, M., … Padeste, C. (2017). Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Journal of Applied Crystallography, 50(3), 909-918. https://doi.org/10.1107/S1600576717005799 |
| Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1
Ou, X., Guan, H., Qin, B., Mu, Z., Wojdyla, J. A., Wang, M., … Cui, S. (2017). Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1. Nature Communications, 8, 15216 (10 pp.). https://doi.org/10.1038/ncomms15216 |
| Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis
Peng, G., McEwen, A. G., Olieric, V., Schmitt, C., Albrecht, S., Cavarelli, J., & Tarnus, C. (2017). Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis. Proteins, 85(8), 1413-1421. https://doi.org/10.1002/prot.25301 |