Active Filters

  • (-) PSI Groups = 2313 Biomolecular Complexes
Search Results 1 - 20 of 90

Pages

  • RSS Feed
Select Page
Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop
Abel, A. C., Mühlethaler, T., Dessin, C., Schachtsiek, T., Sammet, B., Sharpe, T., … Prota, A. E. (2024). Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop. Journal of Biological Chemistry, 300(6), 107363 (10 pp.). https://doi.org/10.1016/j.jbc.2024.107363
Modular synthesis of functional libraries by accelerated SuFEx click chemistry
Homer, J. A., Koelln, R. A., Barrow, A. S., Gialelis, T. L., Boiarska, Z., Steinohrt, N. S., … Moses, J. E. (2024). Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chemical Science, 15, 3879-3892. https://doi.org/10.1039/d3sc05729a
Microtubule specialization by +TIP networks: from mechanisms to functional implications
Meier, S. M., Steinmetz, M. O., & Barral, Y. (2024). Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends in Biochemical Sciences, 49(4), 318-332. https://doi.org/10.1016/j.tibs.2024.01.005
Structure-based discovery and rational design of microtubule-targeting agents
Steinmetz, M. O., & Prota, A. E. (2024). Structure-based discovery and rational design of microtubule-targeting agents. Current Opinion in Structural Biology, 87, 102845 (15 pp.). https://doi.org/10.1016/j.sbi.2024.102845
Maytansinol functionalization: towards useful probes for studying microtubule dynamics
Boiarska, Z., Pérez-Peña, H., Abel, A. C., Marzullo, P., Álvarez-Bernad, B., Bonato, F., … Passarella, D. (2023). Maytansinol functionalization: towards useful probes for studying microtubule dynamics. Chemistry: A European Journal, 29(5), e202203431 (12 pp.). https://doi.org/10.1002/chem.202203431
The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips
Chen, X., Portran, D., Widmer, L. A., Stangier, M. M., Czub, M. P., Liakopoulos, D., … Barral, Y. (2023). The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. Journal of Cell Biology, 222(7), e202110126 (18 pp.). https://doi.org/10.1083/jcb.202110126
Chemical modulation of microtubule structure through the laulimalide/peloruside site
Estévez-Gallego, J., Álvarez-Bernad, B., Pera, B., Wullschleger, C., Raes, O., Menche, D., … Oliva, M. Á. (2023). Chemical modulation of microtubule structure through the laulimalide/peloruside site. Structure, 31(1), 88-99.e5. https://doi.org/10.1016/j.str.2022.11.006
Editorial: Frontiers in malaria research
Gill, R., Hora, R., Alam, M. M., Bansal, A., Bhatt, T. K., & Sharma, A. (2023). Editorial: Frontiers in malaria research. Frontiers in Microbiology, 14, 1191773 (4 pp.). https://doi.org/10.3389/fmicb.2023.1191773
Multivalency ensures persistence of a +TIP body at specialized microtubule ends
Meier, S. M., Farcas, A. M., Kumar, A., Ijavi, M., Bill, R. T., Stelling, J., … Barral, Y. (2023). Multivalency ensures persistence of a +TIP body at specialized microtubule ends. Nature Cell Biology, 25, 56-67. https://doi.org/10.1038/s41556-022-01035-2
Structural insight into the stabilization of microtubules by taxanes
Prota, A. E., Lucena-Agell, D., Ma, Y., Estevez-Gallego, J., Li, S., Bargsten, K., … Díaz, J. F. (2023). Structural insight into the stabilization of microtubules by taxanes. eLife, 12, e84791 (35 pp.). https://doi.org/10.7554/elife.84791
Computational approaches to the rational design of tubulin-targeting agents
Pérez-Peña, H., Abel, A. C., Shevelev, M., Prota, A. E., Pieraccini, S., & Horvath, D. (2023). Computational approaches to the rational design of tubulin-targeting agents. Biomolecules, 13(2), 285 (35 pp.). https://doi.org/10.3390/biom13020285
VASH1–SVBP and VASH2–SVBP generate different detyrosination profiles on microtubules
Ramirez-Rios, S., Choi, S. R., Sanyal, C., Blum, T. B., Bosc, C., Krichen, F., … Moutin, M. J. (2023). VASH1–SVBP and VASH2–SVBP generate different detyrosination profiles on microtubules. Journal of Cell Biology, 222(2), e202205096 (30 pp.). https://doi.org/10.1083/jcb.202205096
Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography
Wranik, M., Weinert, T., Slavov, C., Masini, T., Furrer, A., Gaillard, N., … Standfuss, J. (2023). Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Nature Communications, 14(1), 903 (12 pp.). https://doi.org/10.1038/s41467-023-36481-5
Structural and biochemical characterisation of Co<sup>2+</sup>-binding sites on serum albumins and their interplay with fatty acids
Wu, D., Gucwa, M., Czub, M. P., Cooper, D. R., Shabalin, I. G., Fritzen, R., … Stewart, A. J. (2023). Structural and biochemical characterisation of Co2+-binding sites on serum albumins and their interplay with fatty acids. Chemical Science, 14(23), 6244-6258. https://doi.org/10.1039/d3sc01723k
Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: further chemical modifications and potential therapeutic effects against lymphomas
Barreca, M., Spanò, V., Rocca, R., Bivacqua, R., Abel, A. C., Maruca, A., … Barraja, P. (2022). Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: further chemical modifications and potential therapeutic effects against lymphomas. European Journal of Medicinal Chemistry, 243, 114744 (25 pp.). https://doi.org/10.1016/j.ejmech.2022.114744
Organism-specific differences in the binding of ketoprofen to serum albumin
Czub, M. P., Stewart, A. J., Shabalin, I. G., & Minor, W. (2022). Organism-specific differences in the binding of ketoprofen to serum albumin. IUCrJ, 9(5), 551-561. https://doi.org/10.1107/S2052252522006820
Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in <em>Xenopus </em>egg cytoplasmic extracts
Guyomar, C., Bousquet, C., Ku, S., Heumann, J. M., Guilloux, G., Gaillard, N., … Chrétien, D. (2022). Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in Xenopus egg cytoplasmic extracts. eLife, 11, e83021 (26 pp.). https://doi.org/10.7554/eLife.83021
Maytansinol derivatives: side reactions as a chance for new tubulin binders
Marzullo, P., Boiarska, Z., Pérez-Peña, H., Abel, A. C., Álvarez-Bernad, B., Lucena-Agell, D., … Passarella, D. (2022). Maytansinol derivatives: side reactions as a chance for new tubulin binders. Chemistry: A European Journal, 28(2), e202103520 (10 pp.). https://doi.org/10.1002/chem.202103520
Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes
Mühlethaler, T., Olieric, N., Ehrhard, V. A., Wranik, M., Standfuss, J., Sharma, A., … Steinmetz, M. O. (2022). Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes. In H. Inaba (Ed.), Methods in molecular biology: Vol. 2430. Microtubules. Methods and protocols (pp. 349-374). https://doi.org/10.1007/978-1-0716-1983-4_23
Rational design of a novel tubulin inhibitor with a unique mechanism of action
Mühlethaler, T., Milanos, L., Ortega, J. A., Blum, T. B., Gioia, D., Roy, B., … Steinmetz, M. O. (2022). Rational design of a novel tubulin inhibitor with a unique mechanism of action. Angewandte Chemie International Edition, 61(25), e202204052 (11 pp.). https://doi.org/10.1002/anie.202204052
 

Pages