Active Filters

  • (-) PSI Groups = 2314 Host-Pathogen Interactions
  • (-) Keywords ≠ microtubule
Search Results 1 - 20 of 25
Select Page
A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors
Amer, M., Leka, O., Jasko, P., Frey, D., Li, X., & Kammerer, R. A. (2023). A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors. Scientific Reports, 13(1), 10159 (11 pp.). https://doi.org/10.1038/s41598-023-36855-1
Poly(methyl methacrylate)-based nanofluidic device for rapid and multiplexed serological antibody detection of SARS-CoV-2
Mortelmans, T., Kazazis, D., Padeste, C., Berger, P., Li, X., & Ekinci, Y. (2022). Poly(methyl methacrylate)-based nanofluidic device for rapid and multiplexed serological antibody detection of SARS-CoV-2. ACS Applied Nano Materials, 5(1), 517-526. https://doi.org/10.1021/acsanm.1c03309
The role of the N-terminal amphipathic helix in bacterial YidC: insights from functional studies, the crystal structure and molecular dynamics simulations
Nass, K. J., Ilie, I. M., Saller, M. J., Driessen, A. J. M., Caflisch, A., Kammerer, R. A., & Li, X. (2022). The role of the N-terminal amphipathic helix in bacterial YidC: insights from functional studies, the crystal structure and molecular dynamics simulations. Biochimica et Biophysica Acta: Biomembranes, 1864(3), 183825 (9 pp.). https://doi.org/10.1016/j.bbamem.2021.183825
High-Level Production of Phenylacetaldehyde using Fusion-Tagged Styrene Oxide Isomerase
Choo, J. P. S., Kammerer, R. A., Li, X., & Li, Z. (2021). High-Level Production of Phenylacetaldehyde using Fusion-Tagged Styrene Oxide Isomerase. Advanced Synthesis and Catalysis, 363(6), 1714-1721. https://doi.org/10.1002/adsc.202001500
Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3
Leka, O., Wu, Y., Li, X., & Kammerer, R. A. (2021). Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3. Journal of Biological Chemistry, 296, 100684 (8 pp.). https://doi.org/10.1016/j.jbc.2021.100684
Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 167-184). https://doi.org/10.1007/978-1-0716-0373-4_12
Structural basis for ion selectivity in TMEM175 K<sup>+</sup> channels
Brunner, J. D., Jakob, R. P., Schulze, T., Neldner, Y., Moroni, A., Thiel, G., … Schenck, S. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9, e53683 (24 pp.). https://doi.org/10.7554/eLife.53683
Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of <em>Dictyostelium discoideum</em>
Fiedler, T., Fabrice, T. N., Studer, V., Vinet, A., Faltova, L., Kammerer, R. A., … Pieters, J. (2020). Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Letters, 594(13), 2116-2127. https://doi.org/10.1002/1873-3468.13787
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C
Li, X., Brunner, C., Wu, Y., Leka, O., Schneider, G., & Kammerer, R. A. (2020). Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 175, 36-43. https://doi.org/10.1016/j.toxicon.2019.11.010
Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity
Brunner, J. D., & Schenck, S. (2019). Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity. In G. Drin (Ed.), Methods in molecular biology: Vol. 1949. Intracellular lipid transport (pp. 181-199). https://doi.org/10.1007/978-1-4939-9136-5_14
Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria
Żyła, D. S., Prota, A. E., Capitani, G., & Glockshuber, R. (2019). Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria. Journal of Biological Chemistry, 294(27), 10553-10563. https://doi.org/10.1074/jbc.RA119.008610
Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex
Jiang, K., Faltova, L., Hua, S., Capitani, G., Prota, A. E., Landgraf, C., … Akhmanova, A. (2018). Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex. Structure, 26(3), 375-382. https://doi.org/10.1016/j.str.2017.12.017
Crystal structures and inhibitor interactions of mouse and dog MTH1 reveal species-specific differences in affinity
Narwal, M., Jemth, A. S., Gustafsson, R., Almlöf, I., Warpman Berglund, U., Helleday, T., & Stenmark, P. (2018). Crystal structures and inhibitor interactions of mouse and dog MTH1 reveal species-specific differences in affinity. Biochemistry, 57(5), 593-603. https://doi.org/10.1021/acs.biochem.7b01163
Dual and direction-selective mechanisms of phosphate transport by the vesicular glutamate transporter
Preobraschenski, J., Cheret, C., Ganzella, M., Zander, J. F., Richter, K., Schenck, S., … Ahnert-Hilger, G. (2018). Dual and direction-selective mechanisms of phosphate transport by the vesicular glutamate transporter. Cell Reports, 23(2), 535-545. https://doi.org/10.1016/j.celrep.2018.03.055
Structural basis for the selective inhibition of c-Jun N-terminal kinase 1 determined by rigid DARPin-DARPin fusions
Wu, Y., Honegger, A., Batyuk, A., Mittl, P. R. E., & Plückthun, A. (2018). Structural basis for the selective inhibition of c-Jun N-terminal kinase 1 determined by rigid DARPin-DARPin fusions. Journal of Molecular Biology, 430(14), 2128-2138. https://doi.org/10.1016/j.jmb.2017.10.032
Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C
Benoit, R. M., Schärer, M. A., Wieser, M. M., Li, X., Frey, D., & Kammerer, R. A. (2017). Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Scientific Reports, 7, 43588 (7 pp.). https://doi.org/10.1038/srep43588
Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex
Jiang, K., Rezabkova, L., Hua, S., Liu, Q., Capitani, G., Altelaar, A. F. M., … Akhmanova, A. (2017). Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nature Cell Biology, 19(5), 480-492. https://doi.org/10.1038/ncb3511
Short linear sequence motif LxxPTPh targets diverse proteins to growing microtubule ends
Kumar, A., Manatschal, C., Rai, A., Grigoriev, I., Steiner Degen, M., Jaussi, R., … Steinmetz, M. O. (2017). Short linear sequence motif LxxPTPh targets diverse proteins to growing microtubule ends. Structure, 25(6), 924-932. https://doi.org/10.1016/j.str.2017.04.010
Baculovirus-based genome editing in primary cells
Mansouri, M., Ehsaei, Z., Taylor, V., & Berger, P. (2017). Baculovirus-based genome editing in primary cells. Plasmid, 90, 5-9. https://doi.org/10.1016/j.plasmid.2017.01.003
Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A
Paulino, C., Neldner, Y., Lam, A. K. M., Kalienkova, V., Brunner, J. D., Schenck, S., & Dutzler, R. (2017). Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. eLife, 6, e26232 (23 pp.). https://doi.org/10.7554/eLife.26232