| Structural basis of connexin-36 gap junction channel inhibition
Ding, X., Aureli, S., Vaithia, A., Lavriha, P., Schuster, D., Khanppnavar, B., … Korkhov, V. M. (2024). Structural basis of connexin-36 gap junction channel inhibition. Cell Discovery, 10(1), 68 (4 pp.). https://doi.org/10.1038/s41421-024-00691-y |
| Systematic identification of structure-specific protein–protein interactions
Holfeld, A., Schuster, D., Sesterhenn, F., Gillingham, A. K., Stalder, P., Haenseler, W., … Picotti, P. (2024). Systematic identification of structure-specific protein–protein interactions. Molecular Systems Biology, 20, 651-675. https://doi.org/10.1038/s44320-024-00037-6 |
| Comprehensive overview of bottom-up proteomics using mass spectrometry
Jiang, Y., Rex, D. A. B., Schuster, D., Neely, B. A., Rosano, G. L., Volkmar, N., … Meyer, J. G. (2024). Comprehensive overview of bottom-up proteomics using mass spectrometry. ACS Measurement Science Au, 4(4), 338-417. https://doi.org/10.1021/acsmeasuresciau.3c00068 |
| Advances, challenges, and opportunities in structural biology
Khanppnavar, B., North, R. A., Ventura, S., & Xu, Y. (2024). Advances, challenges, and opportunities in structural biology. Trends in Biochemical Sciences, 49(2), 93-96. https://doi.org/10.1016/j.tibs.2023.12.006 |
| Regulatory sites of CaM-sensitive adenylyl cyclase AC8 revealed by cryo-EM and structural proteomics
Khanppnavar, B., Schuster, D., Lavriha, P., Uliana, F., Özel, M., Mehta, V., … Korkhov, V. M. (2024). Regulatory sites of CaM-sensitive adenylyl cyclase AC8 revealed by cryo-EM and structural proteomics. EMBO Reports, 25, 1513-1540. https://doi.org/10.1038/s44319-024-00076-y |
| Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase
Khanppnavar, B., Choo, J. P. S., Hagedoorn, P. L., Smolentsev, G., Štefanić, S., Kumaran, S., … Li, X. (2024). Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase. Nature Chemistry. https://doi.org/10.1038/s41557-024-01523-y |
| Expression, purification, and nanodisc reconstitution of connexin-43 hemichannels for structural characterization by cryo-electron microscopyp
Lavriha, P., Qi, C., & Korkhov, V. M. (2024). Expression, purification, and nanodisc reconstitution of connexin-43 hemichannels for structural characterization by cryo-electron microscopyp. In F. Mammano & M. Retamal (Eds.), Methods in molecular biology: Vol. 2801. Connexin hemichannels. Methods and protocols (pp. 29-43). https://doi.org/10.1007/978-1-0716-3842-2_3 |
| Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor
Saha, S., Khanppnavar, B., Maharana, J., Kim, H., Carino, C. M. C., Daly, C., … Shukla, A. K. (2024). Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Cell, 187(17), 4751-4769.e25. https://doi.org/10.1016/j.cell.2024.07.005 |
| Structural insights into membrane adenylyl cyclases, initiators of cAMP signaling
Schuster, D., Khanppnavar, B., Kantarci, I., Mehta, V., & Korkhov, V. M. (2024). Structural insights into membrane adenylyl cyclases, initiators of cAMP signaling. Trends in Biochemical Sciences, 49(2), 156-168. https://doi.org/10.1016/j.tibs.2023.12.002 |
| Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel
Barret, D. C. A., Schuster, D., Rodrigues, M. J., Leitner, A., Picotti, P., Schertler, G. F. X., … Marino, J. (2023). Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proceedings of the National Academy of Sciences of the United States of America PNAS, 120(15), e2300309120 (10 pp.). https://doi.org/10.1073/pnas.2300309120 |
| Approaches for evolutionary, biochemical, and structural analysis of bacterial steroid 5a-reductases
Han, Y., Zhuang, Q., & Ren, R. (2023). Approaches for evolutionary, biochemical, and structural analysis of bacterial steroid 5a-reductases. Methods in enzymology: Vol. 689. (pp. 237-261). https://doi.org/10.1016/bs.mie.2023.04.006 |
| Structure of the connexin-43 gap junction channel in a putative closed state
Qi, C., Gutierrez, S. A., Lavriha, P., Othman, A., Lopez-Pigozzi, D., Bayraktar, E., … Korkhov, V. M. (2023). Structure of the connexin-43 gap junction channel in a putative closed state. eLife, 12, RP87616 (27 pp.). https://doi.org/10.7554/eLife.87616 |
| Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels
Qi, C., Lavriha, P., Bayraktar, E., Vaithia, A., Schuster, D., Pannella, M., … Korkhov, V. M. (2023). Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels. Science Advances, 9(35), eadh4890 (14 pp.). https://doi.org/10.1126/sciadv.adh4890 |
| Cryptosporulation in <em>Kurthia</em> spp. forces a rethinking of asporogenesis in Firmicutes
Fatton, M., Filippidou, S., Junier, T., Cailleau, G., Berge, M., Poppleton, D., … Junier, P. (2022). Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes. Environmental Microbiology, 24(12), 6320-6335. https://doi.org/10.1111/1462-2920.16145 |
| Structural basis of organic cation transporter-3 inhibition
Khanppnavar, B., Maier, J., Herborg, F., Gradisch, R., Lazzarin, E., Luethi, D., … Sitte, H. H. (2022). Structural basis of organic cation transporter-3 inhibition. Nature Communications, 13, 6714 (13 pp.). https://doi.org/10.1038/s41467-022-34284-8 |
| Structure of <em>Mycobacterium </em>tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases
Mehta, V., Khanppnavar, B., Schuster, D., Kantarci, I., Vercellino, I., Kosturanova, A., … Korkhov, V. M. (2022). Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases. eLife, 11, e77032 (21 pp.). https://doi.org/10.7554/ELIFE.77032 |
| Rational design of a novel tubulin inhibitor with a unique mechanism of action
Mühlethaler, T., Milanos, L., Ortega, J. A., Blum, T. B., Gioia, D., Roy, B., … Steinmetz, M. O. (2022). Rational design of a novel tubulin inhibitor with a unique mechanism of action. Angewandte Chemie International Edition, 61(25), e202204052 (11 pp.). https://doi.org/10.1002/anie.202204052 |
| Structural basis of adenylyl cyclase 9 activation
Qi, C., Lavriha, P., Mehta, V., Khanppnavar, B., Mohammed, I., Li, Y., … Korkhov, V. M. (2022). Structural basis of adenylyl cyclase 9 activation. Nature Communications, 13(1), 1045 (11 pp.). https://doi.org/10.1038/s41467-022-28685-y |
| protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data
Quast, J. P., Schuster, D., & Picotti, P. (2022). protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data. Bioinformatics Advances, 2(1), vbab041 (3 pp.). https://doi.org/10.1093/bioadv/vbab041 |
| Structural insights into an atypical secretory pathway kinase crucial for <em>Toxoplasma gondii</em> invasion
Lentini, G., Ben Chaabene, R., Vadas, O., Ramakrishnan, C., Mukherjee, B., Mehta, V., … Soldati-Favre, D. (2021). Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion. Nature Communications, 12(1), 3788 (17 pp.). https://doi.org/10.1038/s41467-021-24083-y |