Active Filters

  • (-) PSI Groups = 2313 Strukturbiologie Protein-Interaktionen
Search Results 1 - 20 of 120

Pages

  • RSS Feed
Select Page
Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method
Ijavi, M., Style, R. W., Emmanouilidis, L., Kumar, A., Meier, S. M., Torzynski, A. L., … Dufresne, E. R. (2021). Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 17(6), 1655-1662. https://doi.org/10.1039/d0sm01319f
Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of <em>Dictyostelium discoideum</em>
Fiedler, T., Fabrice, T. N., Studer, V., Vinet, A., Faltova, L., Kammerer, R. A., … Pieters, J. (2020). Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Letters, 594(13), 2116-2127. https://doi.org/10.1002/1873-3468.13787
Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent
Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., … Weissman, J. S. (2020). Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent. Molecular Cell, 79(1), 191-198.e3. https://doi.org/10.1016/j.molcel.2020.06.008
Structural basis of noscapine activation for tubulin binding
Oliva, M. A., Prota, A. E., Rodríguez-Salarichs, J., Bennani, Y. L., Jiménez-Barbero, J., Bargsten, K., … Díaz, J. F. (2020). Structural basis of noscapine activation for tubulin binding. Journal of Medicinal Chemistry, 63(15), 8495-8501. https://doi.org/10.1021/acs.jmedchem.0c00855
The structure and symmetry of the radial spoke protein complex in <em>Chlamydomonas </em>flagella
Poghosyan, E., Iacovache, I., Faltova, L., Leitner, A., Yang, P., Diener, D. R., … Ishikawa, T. (2020). The structure and symmetry of the radial spoke protein complex in Chlamydomonas flagella. Journal of Cell Science, 133(16), jcs245233 (9 pp.). https://doi.org/10.1242/jcs.245233
Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
Brindisi, M., Ulivieri, C., Alfano, G., Gemma, S., de Asís Balaguer, F., Khan, T., … Brogi, S. (2019). Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 162, 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins
Chalupska, D., Różycki, B., Humpolickova, J., Faltova, L., Klima, M., & Boura, E. (2019). Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Scientific Reports, 9(1), 567 (11 pp.). https://doi.org/10.1038/s41598-018-37158-6
Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure.
Dohle, W., Prota, A. E., Menchon, G., Hamel, E., Steinmetz, M. O., & Potter, B. V. L. (2019). Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure. ACS Omega, 4, 755-764. https://doi.org/10.1021/acsomega.8b02879
Crystal structure of a heterotetrameric katanin p60:p80 complex
Faltova, L., Jiang, K., Frey, D., Wu, Y., Capitani, G., Prota, A. E., … Kammerer, R. A. (2019). Crystal structure of a heterotetrameric katanin p60:p80 complex. Structure, 27(9), 1375-1383.e3. https://doi.org/10.1016/j.str.2019.07.002
The roles of a flagellar HSP40 ensuring rhythmic beating
Zhu, X., Poghosyan, E., Rezabkova, L., Mehall, B., Sakakibara, H., Hirono, M., … Yang, P. (2019). The roles of a flagellar HSP40 ensuring rhythmic beating. Molecular Biology of the Cell, 30(2), 228-241. https://doi.org/10.1091/mbc.E18-01-0047
Interaction between the <em>Caenorhabditis elegans</em> centriolar protein SAS-5 and microtubules facilitates organelle assembly
Bianchi, S., Rogala, K. B., Dynes, N. J., Hilbert, M., Leidel, S. A., Steinmetz, M. O., … Vakonakis, I. (2018). Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly. Molecular Biology of the Cell, 29(6), 722-735. https://doi.org/10.1091/mbc.E17-06-0412
Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure
Dohle, W., Jourdan, F. L., Menchon, G., Prota, A. E., Foster, P. A., Mannion, P., … Potter, B. V. L. (2018). Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. Journal of Medicinal Chemistry, 61(3), 1031-1044. https://doi.org/10.1021/acs.jmedchem.7b01474
Zampanolide binding to tubulin indicates cross-talk of taxane site with colchicine and nucleotide sites
Field, J. J., Pera, B., Estévez Gallego, J., Calvo, E., Rodríguez-Salarichs, J., Sáez-Calvo, G., … Díaz, J. F. (2018). Zampanolide binding to tubulin indicates cross-talk of taxane site with colchicine and nucleotide sites. Journal of Natural Products, 81(3), 494-505. https://doi.org/10.1021/acs.jnatprod.7b00704
Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils
Kraatz, S. H. W., Bianchi, S., & Steinmetz, M. O. (2018). Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils. Bioscience Reports, 38(5), BSR20181073 (11 pp.). https://doi.org/10.1042/BSR20181073
A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin
Menchon, G., Prota, A. E., Lucena-Agell, D., Bucher, P., Jansen, R., Irschik, H., … Steinmetz, M. O. (2018). A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nature Communications, 9(1), 2106 (9 pp.). https://doi.org/10.1038/s41467-018-04535-8
Molecular dynamics as a tool for virtual ligand screening
Menchon, G., Maveyraud, L., & Czaplicki, G. (2018). Molecular dynamics as a tool for virtual ligand screening. In M. Gore & U. B. Jagtap (Eds.), Methods in molecular biology: Vol. 1762. Computational drug discovery and design (pp. 145-178). https://doi.org/10.1007/978-1-4939-7756-7_9
Structure-function relationship of the Bik1-Bim1 complex
Stangier, M. M., Kumar, A., Chen, X., Farcas, A. M., Barral, Y., & Steinmetz, M. O. (2018). Structure-function relationship of the Bik1-Bim1 complex. Structure, 26(4), 607-618.e4. https://doi.org/10.1016/j.str.2018.03.003
Novel peptide probes to assess the tensional state of fibronectin fibers in cancer
Arnoldini, S., Moscaroli, A., Chabria, M., Hilbert, M., Hertig, S., Schibli, R., … Vogel, V. (2017). Novel peptide probes to assess the tensional state of fibronectin fibers in cancer. Nature Communications, 8(1), 1793 (13 pp.). https://doi.org/10.1038/s41467-017-01846-0
Deconvolution of buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention
Bohnacker, T., Prota, A. E., Beaufils, F., Burke, J. E., Melone, A., Inglis, A. J., … Wymann, M. P. (2017). Deconvolution of buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 8, 14683 (13 pp.). https://doi.org/10.1038/ncomms14683
Structural basis of <em>cis</em>- and <em>trans</em>-combretastatin binding to tubulin
Gaspari, R., Prota, A. E., Bargsten, K., Cavalli, A., & Steinmetz, M. O. (2017). Structural basis of cis- and trans-combretastatin binding to tubulin. Chem, 2(1), 102-113. https://doi.org/10.1016/j.chempr.2016.12.005
 

Pages