Active Filters

  • (-) PSI Groups = 2313 Strukturbiologie Protein-Interaktionen
Search Results 1 - 20 of 133

Pages

  • RSS Feed
Select Page
Chemical modulation of microtubule structure through the laulimalide/peloruside site
Estévez-Gallego, J., Álvarez-Bernad, B., Pera, B., Wullschleger, C., Raes, O., Menche, D., … Oliva, M. Á. (2023). Chemical modulation of microtubule structure through the laulimalide/peloruside site. Structure, 31(1), 88-99.e5. https://doi.org/10.1016/j.str.2022.11.006
Multivalency ensures persistence of a +TIP body at specialized microtubule ends
Meier, S. M., Farcas, A. M., Kumar, A., Ijavi, M., Bill, R. T., Stelling, J., … Barral, Y. (2023). Multivalency ensures persistence of a +TIP body at specialized microtubule ends. Nature Cell Biology, 25, 56-67. https://doi.org/10.1038/s41556-022-01035-2
Structural insight into the stabilization of microtubules by taxanes
Prota, A. E., Lucena-Agell, D., Ma, Y., Estevez-Gallego, J., Li, S., Bargsten, K., … Díaz, J. F. (2023). Structural insight into the stabilization of microtubules by taxanes. eLife, 12, e84791 (35 pp.). https://doi.org/10.7554/elife.84791
Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method
Ijavi, M., Style, R. W., Emmanouilidis, L., Kumar, A., Meier, S. M., Torzynski, A. L., … Dufresne, E. R. (2021). Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 17(6), 1655-1662. https://doi.org/10.1039/d0sm01319f
Structure and regulation of the microtubule plus-end tracking protein Kar9
Kumar, A., Meier, S. M., Farcas, A. M., Manatschal, C., Barral, Y., & Steinmetz, M. O. (2021). Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure, 29(11), 1266-1278.e4. https://doi.org/10.1016/j.str.2021.06.012
Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of <em>Dictyostelium discoideum</em>
Fiedler, T., Fabrice, T. N., Studer, V., Vinet, A., Faltova, L., Kammerer, R. A., … Pieters, J. (2020). Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Letters, 594(13), 2116-2127. https://doi.org/10.1002/1873-3468.13787
Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent
Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., … Weissman, J. S. (2020). Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent. Molecular Cell, 79(1), 191-198.e3. https://doi.org/10.1016/j.molcel.2020.06.008
Structural basis of noscapine activation for tubulin binding
Oliva, M. A., Prota, A. E., Rodríguez-Salarichs, J., Bennani, Y. L., Jiménez-Barbero, J., Bargsten, K., … Díaz, J. F. (2020). Structural basis of noscapine activation for tubulin binding. Journal of Medicinal Chemistry, 63(15), 8495-8501. https://doi.org/10.1021/acs.jmedchem.0c00855
The structure and symmetry of the radial spoke protein complex in <em>Chlamydomonas </em>flagella
Poghosyan, E., Iacovache, I., Faltova, L., Leitner, A., Yang, P., Diener, D. R., … Ishikawa, T. (2020). The structure and symmetry of the radial spoke protein complex in Chlamydomonas flagella. Journal of Cell Science, 133(16), jcs245233 (9 pp.). https://doi.org/10.1242/jcs.245233
Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
Brindisi, M., Ulivieri, C., Alfano, G., Gemma, S., de Asís Balaguer, F., Khan, T., … Brogi, S. (2019). Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 162, 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins
Chalupska, D., Różycki, B., Humpolickova, J., Faltova, L., Klima, M., & Boura, E. (2019). Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Scientific Reports, 9(1), 567 (11 pp.). https://doi.org/10.1038/s41598-018-37158-6
Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure.
Dohle, W., Prota, A. E., Menchon, G., Hamel, E., Steinmetz, M. O., & Potter, B. V. L. (2019). Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure. ACS Omega, 4, 755-764. https://doi.org/10.1021/acsomega.8b02879
Crystal structure of a heterotetrameric katanin p60:p80 complex
Faltova, L., Jiang, K., Frey, D., Wu, Y., Capitani, G., Prota, A. E., … Kammerer, R. A. (2019). Crystal structure of a heterotetrameric katanin p60:p80 complex. Structure, 27(9), 1375-1383.e3. https://doi.org/10.1016/j.str.2019.07.002
The roles of a flagellar HSP40 ensuring rhythmic beating
Zhu, X., Poghosyan, E., Rezabkova, L., Mehall, B., Sakakibara, H., Hirono, M., … Yang, P. (2019). The roles of a flagellar HSP40 ensuring rhythmic beating. Molecular Biology of the Cell, 30(2), 228-241. https://doi.org/10.1091/mbc.E18-01-0047
Interaction between the &lt;em&gt;Caenorhabditis elegans&lt;/em&gt; centriolar protein SAS-5 and microtubules facilitates organelle assembly
Bianchi, S., Rogala, K. B., Dynes, N. J., Hilbert, M., Leidel, S. A., Steinmetz, M. O., … Vakonakis, I. (2018). Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly. Molecular Biology of the Cell, 29(6), 722-735. https://doi.org/10.1091/mbc.E17-06-0412
Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin Co-crystal structure
Dohle, W., Jourdan, F. L., Menchon, G., Prota, A. E., Foster, P. A., Mannion, P., … Potter, B. V. L. (2018). Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin Co-crystal structure. Journal of Medicinal Chemistry, 61(3), 1031-1044. https://doi.org/10.1021/acs.jmedchem.7b01474
Zampanolide binding to tubulin indicates cross-talk of taxane site with colchicine and nucleotide sites
Field, J. J., Pera, B., Estévez Gallego, J., Calvo, E., Rodríguez-Salarichs, J., Sáez-Calvo, G., … Díaz, J. F. (2018). Zampanolide binding to tubulin indicates cross-talk of taxane site with colchicine and nucleotide sites. Journal of Natural Products, 81(3), 494-505. https://doi.org/10.1021/acs.jnatprod.7b00704
Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils
Kraatz, S. H. W., Bianchi, S., & Steinmetz, M. O. (2018). Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils. Bioscience Reports, 38(5), BSR20181073 (11 pp.). https://doi.org/10.1042/BSR20181073
A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin
Menchon, G., Prota, A. E., Lucena-Agell, D., Bucher, P., Jansen, R., Irschik, H., … Steinmetz, M. O. (2018). A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nature Communications, 9(1), 2106 (9 pp.). https://doi.org/10.1038/s41467-018-04535-8
Molecular dynamics as a tool for virtual ligand screening
Menchon, G., Maveyraud, L., & Czaplicki, G. (2018). Molecular dynamics as a tool for virtual ligand screening. In M. Gore & U. B. Jagtap (Eds.), Methods in molecular biology: Vol. 1762. Computational drug discovery and design (pp. 145-178). https://doi.org/10.1007/978-1-4939-7756-7_9
 

Pages