Active Filters

  • (-) PSI Groups = 3303 Soft Matter
Search Results 1 - 20 of 552

Pages

  • RSS Feed
Select Page
The W-cluster reactive sites interaction model for WDLC coatings with ionic liquids
Arshad, M. S., Čoga, L., Geue, T., Kovač, J., Cruz, S. M. A., & Kalin, M. (2023). The W-cluster reactive sites interaction model for WDLC coatings with ionic liquids. Tribology International, 185, 108550 (11 pp.). https://doi.org/10.1016/j.triboint.2023.108550
From surfactants to viscoelastic capsules
De Angelis, G., Gray, N., Lutz-Bueno, V., & Amstad, E. (2023). From surfactants to viscoelastic capsules. Advanced Materials Interfaces, 10(13), 2202450 (11 pp.). https://doi.org/10.1002/admi.202202450
Rheological properties of ionically crosslinked viscoelastic 2D films vs. corresponding 3D bulk hydrogels
De Angelis, G., Lutz-Bueno, V., & Amstad, E. (2023). Rheological properties of ionically crosslinked viscoelastic 2D films vs. corresponding 3D bulk hydrogels. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.3c02675
Polymer-metal-organic framework self-assembly (PMOFSA) as a robust one-step method to generate well-dispersed hybrid nanoparticles in water
Li, K., Yu, Z., Dovgaliuk, I., Le Coeur, C., Lütz-Bueno, V., Leroy, E., … Couturaud, B. (2023). Polymer-metal-organic framework self-assembly (PMOFSA) as a robust one-step method to generate well-dispersed hybrid nanoparticles in water. Chemical Communications, 33(59), 4923-4926. https://doi.org/10.1039/d2cc06088d
Amyloid-polysaccharide interfacial coacervates as therapeutic materials
Peydayesh, M., Kistler, S., Zhou, J., Lutz-Bueno, V., Damiani Victorelli, F., Bagliotti Meneguin, A., … Mezzenga, R. (2023). Amyloid-polysaccharide interfacial coacervates as therapeutic materials. Nature Communications, 14(1), 1848 (11 pp.). https://doi.org/10.1038/s41467-023-37629-z
Mechanical tuning of virus-like particles
Radiom, M., Keys, T., Turgay, Y., Ali, A., Preet, S., Chesnov, S., … Mezzenga, R. (2023). Mechanical tuning of virus-like particles. Journal of Colloid and Interface Science, 634, 963-971. https://doi.org/10.1016/j.jcis.2022.12.090
Amyloid fibrils enhance the topical bio-adhesivity of liquid crystalline mesophase-based drug formulations
Victorelli, F. D., Rodero, C. F., Lutz-Bueno, V., Chorilli, M., & Mezzenga, R. (2023). Amyloid fibrils enhance the topical bio-adhesivity of liquid crystalline mesophase-based drug formulations. Advanced Healthcare Materials, 12(12), 2202720 (9 pp.). https://doi.org/10.1002/adhm.202202720
Multi-length scale structural investigation of lysozyme self-assembly
Catalini, S., Lutz-Bueno, V., Usuelli, M., Diener, M., Taschin, A., Bartolini, P., … Torre, R. (2022). Multi-length scale structural investigation of lysozyme self-assembly. iScience, 25(7), 104586 (15 pp.). https://doi.org/10.1016/j.isci.2022.104586
Mineral crystal thickness in calcified cartilage and subchondral bone in healthy and osteoarthritic human knees
Finnilä, M. A. J., Das Gupta, S., Turunen, M. J., Hellberg, I., Turkiewicz, A., Lutz‐Bueno, V., … Englund, M. (2022). Mineral crystal thickness in calcified cartilage and subchondral bone in healthy and osteoarthritic human knees. Journal of Bone and Mineral Research, 37(9), 1700-1710. https://doi.org/10.1002/jbmr.4642
Solvent modulation in peptide sub-microfibers obtained by solution blow spinning
Gonçalves Carvalho Dias, A. M., Cena, C., Lutz-Bueno, V., Mezzenga, R., Marques, A., Ferreira, I., & Afonso Roque, A. C. (2022). Solvent modulation in peptide sub-microfibers obtained by solution blow spinning. Frontiers in Chemistry, 10, 1054347 (9 pp.). https://doi.org/10.3389/fchem.2022.1054347
Magnetic order and exchange coupling in the frustrated diamond-lattice antiferromagnet MnSc<sub>2</sub>Se<sub>4</sub>
Guratinder, K., Tsurkan, V., Prodan, L., Keller, L., Embs, J. P., Juranyi, F., … Zaharko, O. (2022). Magnetic order and exchange coupling in the frustrated diamond-lattice antiferromagnet MnSc2Se4. Physical Review B, 105(17), 174423 (6 pp.). https://doi.org/10.1103/PhysRevB.105.174423
Dynamically disordered hydrogen bonds in the hureaulite-type phosphatic oxyhydroxide Mn<sub>5</sub>[(PO<sub>4</sub>)<sub>2</sub>(PO<sub>3</sub>(OH))<sub>2</sub>](HOH)<sub>4</sub>
Hartl, A., Jurányi, F., Krack, M., Lunkenheimer, P., Schulz, A., Sheptyakov, D., … Park, S. H. (2022). Dynamically disordered hydrogen bonds in the hureaulite-type phosphatic oxyhydroxide Mn5[(PO4)2(PO3(OH))2](HOH)4. Journal of Chemical Physics, 156(9), 094502 (18 pp.). https://doi.org/10.1063/5.0083856
Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering
Houston, J. E., Fruhner, L., de la Cotte, A., Rojo González, J., Petrunin, A. V., Gasser, U., … Scotti, A. (2022). Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. Science Advances, 8(26), eabn6129 (7 pp.). https://doi.org/10.1126/sciadv.abn6129
Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering
Lutz-Bueno, V., Diaz, A., Wu, T., Nyström, G., Geiger, T., & Antonini, C. (2022). Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering. Biomacromolecules, 23(3), 676-686. https://doi.org/10.1021/acs.biomac.1c00521
Neat protein single-chain nanoparticles from partially denatured BSA
Malo de Molina, P., Le, T. P., Iturrospe, A., Gasser, U., Arbe, A., Colmenero, J., & Pomposo, J. A. (2022). Neat protein single-chain nanoparticles from partially denatured BSA. ACS Omega, 7(46), 42163-42169. https://doi.org/10.1021/acsomega.2c04805
Experimental determination of the bulk moduli of hollow nanogels
Scotti, A., Gasser, U., Petrunin, A. V., Fruhner, L., Richtering, W., & Houston, J. E. (2022). Experimental determination of the bulk moduli of hollow nanogels. Soft Matter, 18(31), 5750-5758. https://doi.org/10.1039/d2sm00680d
Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions
Sun, Q., Lutz-Bueno, V., Zhou, J., Yuan, Y., & Fischer, P. (2022). Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions. Nanoscale Advances, 4(22), 4863-4870. https://doi.org/10.1039/d2na00303a
Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer
Victorelli, F. D., Salvati Manni, L., Biffi, S., Bortot, B., Buzzá, H. H., Lutz-Bueno, V., … Mezzenga, R. (2022). Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. Journal of Colloid and Interface Science, 620, 419-430. https://doi.org/10.1016/j.jcis.2022.04.031
Enhanced room-temperature photoluminescence quantum yield in morphology controlled J-aggregates
Anantharaman, S. B., Kohlbrecher, J., Rainò, G., Yakunin, S., Stöferle, T., Patel, J., … Heier, J. (2021). Enhanced room-temperature photoluminescence quantum yield in morphology controlled J-aggregates. Advanced Science, 8(4), 1903080 (10 pp.). https://doi.org/10.1002/advs.201903080
Bayesian-inference-based inverse estimation of small angle scattering
Asahara, A., Morita, H., Yano, M., Shoji, T., Ono, K., Mitsumata, C., & Saito, K. (2021). Bayesian-inference-based inverse estimation of small angle scattering. In J. Lee, E. F. Darve, P. K. Kitanidis, M. W. Mahoney, A. Karpatne, M. W. Farthing, & T. Hesser (Eds.), CEUR workshop proceedings: Vol. 2964. Proceedings of the AAAI 2021 spring symposium on combining artificial intelligence and machine learning with physical sciences (p. 157 (6 pp.). CEUR-WS.org.
 

Pages