| Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation
Li, D., Huang, W., Wang, D., Wang, M., Thornton, J. A., Caudillo, L., … Riva, M. (2024). Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation. Environmental Science and Technology, 58(3), 1601-1614. https://doi.org/10.1021/acs.est.3c07958 |
| Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions
Li, K., Zhang, J., Bell, D. M., Wang, T., Lamkaddam, H., Cui, T., … Prevot, A. S. H. (2024). Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions. National Science Review, 11(3), nwae014 (9 pp.). https://doi.org/10.1093/nsr/nwae014 |
| Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer
Marten, R., Xiao, M., Wang, M., Kong, W., He, X. C., Stolzenburg, D., … El Haddad, I. (2024). Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer. Environmental Science: Atmospheres, 4(2), 265-274. https://doi.org/10.1039/D3EA00001J |
| Temperature, humidity, and ionisation effect of iodine oxoacid nucleation
Rörup, B., He, X. C., Shen, J., Baalbaki, R., Dada, L., Sipilä, M., … Lehtipalo, K. (2024). Temperature, humidity, and ionisation effect of iodine oxoacid nucleation. Environmental Science: Atmospheres, 4(5), 531-546. https://doi.org/10.1039/d4ea00013g |
| Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions
Wang, T., Li, K., Bell, D. M., Zhang, J., Cui, T., Surdu, M., … Prevot, A. S. H. (2024). Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions. npj Climate and Atmospheric Science, 7(1), 149 (9 pp.). https://doi.org/10.1038/s41612-024-00682-6 |
| Preparation of the experiment: addition of particles
Alfarra, R., Baltensperger, U., Bell, D. M., Danelli, S. G., Di Biagio, C., Doussin, J. F., … Wenger, J. (2023). Preparation of the experiment: addition of particles. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 163-206). https://doi.org/10.1007/978-3-031-22277-1_5 |
| Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol
Bell, D. M., Pospisilova, V., Lopez-Hilfiker, F., Bertrand, A., Xiao, M., Zhou, X., … Slowik, J. G. (2023). Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. Environmental Science: Atmospheres, 3(1), 115-123. https://doi.org/10.1039/d2ea00105e |
| Preparation of simulation chambers for experiments
Bell, D., Doussin, J. F., & Hohaus, T. (2023). Preparation of simulation chambers for experiments. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 113-127). https://doi.org/10.1007/978-3-031-22277-1_3 |
| Preparation of the experiment: addition and in situ production of trace gases and oxidants in the gas phase
Bell, D. M., Cirtog, M., Doussin, J. F., Fuchs, H., Illman, J., Muñoz, A., … Saathoff, H. (2023). Preparation of the experiment: addition and in situ production of trace gases and oxidants in the gas phase. In J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Eds.), A practical guide to atmospheric simulation chambers (pp. 129-161). https://doi.org/10.1007/978-3-031-22277-1_4 |
| Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol
Bell, D. M., Zhang, J., Top, J., Bogler, S., Surdu, M., Slowik, J. G., … El Haddad, I. (2023). Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol. Analytical Chemistry, 95(37), 13788-13795. https://doi.org/10.1021/acs.analchem.3c00441 |
| Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban
Casotto, R., Skiba, A., Rauber, M., Strähl, J., Tobler, A., Bhattu, D., … Daellenbach, K. R. (2023). Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban. Science of the Total Environment, 855, 158655 (12 pp.). https://doi.org/10.1016/j.scitotenv.2022.158655 |
| An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Caudillo, L., Surdu, M., Lopez, B., Wang, M., Thoma, M., Bräkling, S., … Curtius, J. (2023). An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles. Atmospheric Chemistry and Physics, 23(11), 6613-6631. https://doi.org/10.5194/acp-23-6613-2023 |
| Role of sesquiterpenes in biogenic new particle formation
Dada, L., Stolzenburg, D., Simon, M., Fischer, L., Heinritzi, M., Wang, M., … Kulmala, M. (2023). Role of sesquiterpenes in biogenic new particle formation. Science Advances, 9(36), eadi5297 (15 pp.). https://doi.org/10.1126/sciadv.adi5297 |
| Organic aerosol sources in the Milan metropolitan area - receptor modelling based on field observations and air quality modelling
Daellenbach, K. R., Manousakas, M., Jiang, J., Cui, T., Chen, Y., El Haddad, I., … Prévôt, A. S. H. (2023). Organic aerosol sources in the Milan metropolitan area - receptor modelling based on field observations and air quality modelling. Atmospheric Environment, 307, 119799 (10 pp.). https://doi.org/10.1016/j.atmosenv.2023.119799 |
| The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
Finkenzeller, H., Iyer, S., He, X. C., Simon, M., Koenig, T. K., Lee, C. F., … Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15, 129-135. https://doi.org/10.1038/s41557-022-01067-z |
| Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere
He, X. C., Simon, M., Iyer, S., Xie, H. B., Rörup, B., Shen, J., … Kulmala, M. (2023). Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere. Science, 382(6676), 1308-1314. https://doi.org/10.1126/science.adh2526 |
| Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions
Mishra, S., Tripathi, S. N., Kanawade, V. P., Haslett, S. L., Dada, L., Ciarelli, G., … Prevot, A. S. H. (2023). Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nature Geoscience, 16(3), 224-230. https://doi.org/10.1038/s41561-023-01138-x |
| NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
Nie, W., Yan, C., Yang, L., Roldin, P., Liu, Y., Vogel, A. L., … Ding, A. (2023). NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere. Nature Communications, 14(1), 3347 (11 pp.). https://doi.org/10.1038/s41467-023-39066-4 |
| Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Pfeifer, J., Mahfouz, N. G. A., Schulze, B. C., Mathot, S., Stolzenburg, D., Baalbaki, R., … Kirkby, J. (2023). Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber. Atmospheric Chemistry and Physics, 23(12), 6703-6718. https://doi.org/10.5194/acp-23-6703-2023 |
| Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Schobesberger, S., D'Ambro, E. L., Vettikkat, L., Lee, B. H., Peng, Q., Bell, D. M., … Thornton, J. A. (2023). Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 16(2), 247-271. https://doi.org/10.5194/amt-16-247-2023 |