Active Filters

  • (-) Keywords = catalysis
Search Results 21 - 40 of 43
Select Page
Energy conversion processes with perovskite-type materials
Ferri, D., Pergolesi, D., & Fabbri, E. (2019). Energy conversion processes with perovskite-type materials. Chimia, 73(11), 913-921. https://doi.org/10.2533/chimia.2019.913
On the oxidation state of Cu<sub>2</sub>O upon electrochemical CO<sub>2</sub> reduction: an XPS study
Permyakova, A. A., Herranz, J., El Kazzi, M., Diercks, J. S., Povia, M., Mangani, L. R., … Schmidt, T. J. (2019). On the oxidation state of Cu2O upon electrochemical CO2 reduction: an XPS study. ChemPhysChem, 20(22), 3120-3127. https://doi.org/10.1002/cphc.201900468
Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N<sub>2</sub>, and CO<sub>2</sub>
Binninger, T., Pribyl, B., Pătru, A., Ruettimann, P., Bjelić, S., & Schmidt, T. J. (2018). Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2, and CO2. Journal of Mass Spectrometry, 53(12), 1214-1221. https://doi.org/10.1002/jms.4299
Operando spectroscopic studies of Cu–SSZ-13 for NH<sub>3</sub>–SCR deNOx investigates the role of NH<sub>3</sub> in observed Cu(II) reduction at high NO conversions
Greenaway, A. G., Lezcano-Gonzalez, I., Agote-Aran, M., Gibson, E. K., Odarchenko, Y., & Beale, A. M. (2018). Operando spectroscopic studies of Cu–SSZ-13 for NH3–SCR deNOx investigates the role of NH3 in observed Cu(II) reduction at high NO conversions. Topics in Catalysis, 61(3-4), 175-182. https://doi.org/10.1007/s11244-018-0888-3
Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy
Krumeich, F., Ihli, J., Shu, Y., Cheng, W. C., & van Bokhoven, J. A. (2018). Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy. ACS Catalysis, 8(5), 4591-4599. https://doi.org/10.1021/acscatal.8b00649
Identifying dynamic structural changes of active sites in Pt-Ni bimetallic catalysts using multimodal approaches
Liu, D., Li, Y., Kottwitz, M., Yan, B., Yao, S., Gamalski, A., … Frenkel, A. I. (2018). Identifying dynamic structural changes of active sites in Pt-Ni bimetallic catalysts using multimodal approaches. ACS Catalysis, 8(5), 4120-4131. https://doi.org/10.1021/acscatal.8b00706
Ambient pressure photoelectron spectroscopy: opportunities in catalysis from solids to liquids and introducing time resolution
Roy, K., Artiglia, L., & van Bokhoven, J. A. (2018). Ambient pressure photoelectron spectroscopy: opportunities in catalysis from solids to liquids and introducing time resolution. ChemCatChem, 10(4), 666-682. https://doi.org/10.1002/cctc.201701522
The discovery of Mo(III) in FeMoco: Reuniting enzyme and model chemistry
Bjornsson, R., Neese, F., Schrock, R. R., Einsle, O., & DeBeer, S. (2015). The discovery of Mo(III) in FeMoco: Reuniting enzyme and model chemistry. Journal of Biological Inorganic Chemistry, 20(2), 447-460. https://doi.org/10.1007/s00775-014-1230-6
Chemicals from lignin by catalytic fast pyrolysis, from product control to reaction mechanism
Ma, Z., Custodis, V., Hemberger, P., Bährle, C., Vogel, F., Jeschke, G., & van Bokhoven, J. A. (2015). Chemicals from lignin by catalytic fast pyrolysis, from product control to reaction mechanism. Chimia, 69(10), 597-602. https://doi.org/10.2533/chimia.2015.597
Catalysis seen in action
Tromp, M. (2015). Catalysis seen in action. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2036), 20130152 (12 pp.). https://doi.org/10.1098/rsta.2013.0152
Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems
Fabbri, E., Pǎtru, A., Rabis, A., Kötz, R., & Schmidt, T. J. (2014). Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems. Chimia, 68(4), 217-220. https://doi.org/10.2533/chimia.2014.217
Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines
Abdala, P. M., Safonova, O. V., Wiker, G., van Beek, W., Emerich, H., van Bokhoven, J. A., … Nachtegaal, M. (2012). Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines. Chimia, 66(9), 699-705. https://doi.org/10.2533/chimia.2012.699
Single-atom active sites on metal-organic frameworks
Ranocchiari, M., Lothschütz, C., Grolimund, D., & van Bokhoven, J. A. (2012). Single-atom active sites on metal-organic frameworks. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences: Vol. 468. Proceedings of the Royal Society A. mathematical, physical and engineering sciences (pp. 1985-1999). https://doi.org/10.1098/rspa.2012.0078
<em>T-REX</em>: new software for advanced QEXAFS data analysis
Stötzel, J., Lützenkirchen-Hecht, D., Grunwaldt, J. D., & Frahm, R. (2012). T-REX: new software for advanced QEXAFS data analysis. Journal of Synchrotron Radiation, 19(6), 920-929. https://doi.org/10.1107/S0909049512038599
Insights in the mechanism of selective olefin oligomerisation catalysis using stopped-flow freeze-quench techniques: A Mo K-edge QEXAFS study
Wells, P. P., Bartlett, S. A., Nachtegaal, M., Dent, A. J., Cibin, G., Reid, G., … Tromp, M. (2011). Insights in the mechanism of selective olefin oligomerisation catalysis using stopped-flow freeze-quench techniques: A Mo K-edge QEXAFS study. Journal of Catalysis, 284(2), 247-258. https://doi.org/10.1016/j.jcat.2011.10.015
The dedicated QEXAFS facility at the SLS: performance and scientific opportunities
Frahm, R., Nachtegaal, M., Stötzel, J., Harfouche, M., van Bokhoven, J. A., & Grunwaldt, J. D. (2010). The dedicated QEXAFS facility at the SLS: performance and scientific opportunities. In R. Garrett, I. Gentle, K. Nugent, & S. Wilkins (Eds.), AIP conference proceedings: Vol. 1234. SRI 2009. The 10th international conference on synchrotron radiation instrumentation (pp. 251-255). https://doi.org/10.1063/1.3463183
X-ray structure of HIV-1 protease in situ product complex
Bihani, S., Das, A., Prashar, V., Ferrer, J. L., & Hosur, M. V. (2009). X-ray structure of HIV-1 protease in situ product complex. Proteins, 74(3), 594-602. https://doi.org/10.1002/prot.22174
The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis
Fritz-Wolf, K., Urig, S., & Becker, K. (2007). The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. Journal of Molecular Biology, 370(1), 116-127. https://doi.org/10.1016/j.jmb.2007.04.044
Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells
Schneider, I. A., Kramer, D., Wokaun, A., & Scherer, G. G. (2007). Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells. Electrochemistry Communications, 9(7), 1607-1612. https://doi.org/10.1016/j.elecom.2007.03.002
Synthetic natural gas by hydrothermal gasification of biomass. Selection procedure towards a stable catalyst and its sodium sulfate tolerance
Waldner, M. H., Krumeich, F., & Vogel, F. (2007). Synthetic natural gas by hydrothermal gasification of biomass. Selection procedure towards a stable catalyst and its sodium sulfate tolerance. Journal of Supercritical Fluids, 43(1), 91-105. https://doi.org/10.1016/j.supflu.2007.04.004