Active Filters

  • (-) PSI Authors = Steinmetz, Michel O.
Search Results 41 - 60 of 167
Select Page
MAP7 family proteins regulate kinesin-1 recruitment and activation
Hooikaas, P. J., Martin, M., Mühlethaler, T., Kuijntjes, G. J., Peeters, C. A. E., Katrukha, E. A., … Akhmanova, A. (2019). MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 218(4), 1298-1318. https://doi.org/10.1083/jcb.201808065
GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses
Kashyap, A. S., Fernandez-Rodriguez, L., Zhao, Y., Monaco, G., Trefny, M. P., Yoshida, N., … Zippelius, A. (2019). GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Reports, 28(13), 3367-3380.e1. https://doi.org/10.1016/j.celrep.2019.08.057
Structure, thermodynamics, and kinetics of plinabulin binding to two tubulin isotypes
La Sala, G., Olieric, N., Sharma, A., Viti, F., de Asis Balaguer Perez, F., Huang, L., … Cavalli, A. (2019). Structure, thermodynamics, and kinetics of plinabulin binding to two tubulin isotypes. Chem, 5(11), 2969-2986. https://doi.org/10.1016/j.chempr.2019.08.022
VISAGE reveals a targetable mitotic spindle vulnerability in cancer cells
Patterson, J. C., Joughin, B. A., Prota, A. E., Mühlethaler, T., Jonas, O. H., Whitman, M. A., … Yaffe, M. B. (2019). VISAGE reveals a targetable mitotic spindle vulnerability in cancer cells. Cell Systems, 9(1), 74-92.e8. https://doi.org/10.1016/j.cels.2019.05.009
Taxanes convert regions of perturbed microtubule growth into rescue sites
Rai, A., Liu, T., Glauser, S., Katrukha, E. A., Estévez-Gallego, J., Rodríguez-García, R., … Akhmanova, A. (2019). Taxanes convert regions of perturbed microtubule growth into rescue sites. Nature Materials, 19, 355-365. https://doi.org/10.1038/s41563-019-0546-6
Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex
Wang, N., Bosc, C., Ryul Choi, S., Boulan, B., Peris, L., Olieric, N., … Huang, H. (2019). Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex. Nature Structural and Molecular Biology, 26(7), 571-582. https://doi.org/10.1038/s41594-019-0241-y
Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands
de Asís Balaguer, F., Mühlethaler, T., Estévez-Gallego, J., Calvo, E., Giménez-Abián, J., Risinger, A. L., … Díaz, J. F. (2019). Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands. International Journal of Molecular Sciences, 20(6), 1392 (17 pp.). https://doi.org/10.3390/ijms20061392
CLASP suppresses microtubule catastrophes through a single TOG domain
Aher, A., Kok, M., Sharma, A., Rai, A., Olieric, N., Rodriguez-Garcia, R., … Akhmanova, A. (2018). CLASP suppresses microtubule catastrophes through a single TOG domain. Developmental Cell, 46(1), 40-58.e8. https://doi.org/10.1016/j.devcel.2018.05.032
Interaction between the <em>Caenorhabditis elegans</em> centriolar protein SAS-5 and microtubules facilitates organelle assembly
Bianchi, S., Rogala, K. B., Dynes, N. J., Hilbert, M., Leidel, S. A., Steinmetz, M. O., … Vakonakis, I. (2018). Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly. Molecular Biology of the Cell, 29(6), 722-735. https://doi.org/10.1091/mbc.E17-06-0412
High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design
Bueno, O., Estévez Gallego, J., Martins, S., Prota, A. E., Gago, F., Gómez-SanJuan, A., … Priego, E. M. (2018). High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Scientific Reports, 8(1), 4242 (17 pp.). https://doi.org/10.1038/s41598-018-22382-x
Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin Co-crystal structure
Dohle, W., Jourdan, F. L., Menchon, G., Prota, A. E., Foster, P. A., Mannion, P., … Potter, B. V. L. (2018). Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin Co-crystal structure. Journal of Medicinal Chemistry, 61(3), 1031-1044. https://doi.org/10.1021/acs.jmedchem.7b01474
Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex
Jiang, K., Faltova, L., Hua, S., Capitani, G., Prota, A. E., Landgraf, C., … Akhmanova, A. (2018). Structural basis of formation of the microtubule minus-end-regulating CAMSAP-katanin complex. Structure, 26(3), 375-382. https://doi.org/10.1016/j.str.2017.12.017
Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils
Kraatz, S. H. W., Bianchi, S., & Steinmetz, M. O. (2018). Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils. Bioscience Reports, 38(5), BSR20181073 (11 pp.). https://doi.org/10.1042/BSR20181073
A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin
Menchon, G., Prota, A. E., Lucena-Agell, D., Bucher, P., Jansen, R., Irschik, H., … Steinmetz, M. O. (2018). A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nature Communications, 9(1), 2106 (9 pp.). https://doi.org/10.1038/s41467-018-04535-8
Cep120 promotes microtubule formation through a unique tubulin binding C2 domain
Sharma, A., Gerard, S. F., Olieric, N., & Steinmetz, M. O. (2018). Cep120 promotes microtubule formation through a unique tubulin binding C2 domain. Journal of Structural Biology, 203(1), 62-70. https://doi.org/10.1016/j.jsb.2018.01.009
Sustainable syntheses of (-)-jerantinines A & E and structural characterisation of the jerantinine-tubulin complex at the colchicine binding site
Smedley, C. J., Stanley, P. A., Qazzaz, M. E., Prota, A. E., Olieric, N., Collins, H., … Moses, J. E. (2018). Sustainable syntheses of (-)-jerantinines A & E and structural characterisation of the jerantinine-tubulin complex at the colchicine binding site. Scientific Reports, 8(1), 10617 (7 pp.). https://doi.org/10.1038/s41598-018-28880-2
Structure-function relationship of the Bik1-Bim1 complex
Stangier, M. M., Kumar, A., Chen, X., Farcas, A. M., Barral, Y., & Steinmetz, M. O. (2018). Structure-function relationship of the Bik1-Bim1 complex. Structure, 26(4), 607-618.e4. https://doi.org/10.1016/j.str.2018.03.003
Microtubule-targeting agents: strategies to hijack the cytoskeleton
Steinmetz, M. O., & Prota, A. E. (2018). Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends in Cell Biology, 28(10), 776-792. https://doi.org/10.1016/j.tcb.2018.05.001
A structural model for microtubule minus-end recognition and protection by CAMSAP proteins
Atherton, J., Jiang, K., Stangier, M. M., Luo, Y., Hua, S., Houben, K., … Akhmanova, A. (2017). A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nature Structural and Molecular Biology, 24(11), 931-943. https://doi.org/10.1038/nsmb.3483
Deconvolution of buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention
Bohnacker, T., Prota, A. E., Beaufils, F., Burke, J. E., Melone, A., Inglis, A. J., … Wymann, M. P. (2017). Deconvolution of buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 8, 14683 (13 pp.). https://doi.org/10.1038/ncomms14683