Active Filters

  • (-) PSI Groups = 6121 MX Applications
Search Results 101 - 120 of 135
Select Page
Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography
Weinert, T., Skopintsev, P., James, D., Dworkowski, F., Panepucci, E., Kekilli, D., … Standfuss, J. (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science, 365(6448), 61-65. https://doi.org/10.1126/science.aaw8634
A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography
de Wijn, R., Hennig, O., Roche, J., Engilberge, S., Rollet, K., Fernandez-Millan, P., … Sauter, C. (2019). A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ, 6(3), 454-464. https://doi.org/10.1107/S2052252519003622
CLASP suppresses microtubule catastrophes through a single TOG domain
Aher, A., Kok, M., Sharma, A., Rai, A., Olieric, N., Rodriguez-Garcia, R., … Akhmanova, A. (2018). CLASP suppresses microtubule catastrophes through a single TOG domain. Developmental Cell, 46(1), 40-58.e8. https://doi.org/10.1016/j.devcel.2018.05.032
Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis
El Ghachi, M., Howe, N., Huang, C. Y., Olieric, V., Warshamanage, R., Touzé, T., … Caffrey, M. (2018). Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis. Nature Communications, 9(1), 1078 (13 pp.). https://doi.org/10.1038/s41467-018-03477-5
New mineral with modular structure derived from hatruritefrom the pyrometamorphic rocks of the hatrurim complex: ariegilatite, BaCa<sub>12</sub>(SiO<sub>4</sub>)<sub>4</sub>(PO<sub>4</sub>)<sub>2</s
Galuskin, E. V., Krüger, B., Galuskina, I. O., Krüger, H., Vapnik, Y., Wojdyla, J. A., & Murashko, M. (2018). New mineral with modular structure derived from hatruritefrom the pyrometamorphic rocks of the hatrurim complex: ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals, 8(3), 109 (14 pp.). https://doi.org/10.3390/min8030109
Stracherite, BaCa<sub>6</sub>(SiO<sub>4</sub>)<sub>2</sub>[(PO<sub>4</sub>)(CO<sub>3</sub>)]F, the first CO<sub>3</sub>-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel
Galuskin, E. V., Krüger, B., Galuskina, I. O., Krüger, H., Vapnik, Y., Pauluhn, A., & Olieric, V. (2018). Stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F, the first CO3-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel. American Mineralogist, 103(10), 1699-1706. https://doi.org/10.2138/am-2018-6493
Structural insight into conformational changes induced by ATP binding in a type III secretion-associated ATPase from &lt;em&gt;Shigella flexneri&lt;/em&gt;
Gao, X., Mu, Z., Yu, X., Qin, B., Wojdyla, J., Wang, M., & Cui, S. (2018). Structural insight into conformational changes induced by ATP binding in a type III secretion-associated ATPase from Shigella flexneri. Frontiers in Microbiology, 9, 1468 (15 pp.). https://doi.org/10.3389/fmicb.2018.01468
Enzyme catalysis captured using multiple structures from one crystal at varying temperatures
Horrell, S., Kekilli, D., Sen, K., Owen, R. L., Dworkowski, F. S. N., Antonyuk, S. V., … Hough, M. A. (2018). Enzyme catalysis captured using multiple structures from one crystal at varying temperatures. IUCrJ, 5(3), 283-292. https://doi.org/10.1107/S205225251800386X
In situ serial crystallography for rapid de novo membrane protein structure determination.
Huang, C. Y., Olieric, V., Howe, N., Warshamanage, R., Weinert, T., Panepucci, E., … Wang, M. (2018). In situ serial crystallography for rapid de novo membrane protein structure determination. Communications Biology, 1, 124 (8 pp.). https://doi.org/10.1038/S42003-018-0123-6
Sharyginite, Ca<sub>3</sub>TiFe<sub>2</sub>O<sub>8</sub>a new mineral from the Bellerberg volcano, Germany
Juroszek, R., Krüger, H., Galuskina, I., Krüger, B., Jeżak, L., Ternes, B., … Galuskin, E. (2018). Sharyginite, Ca3TiFe2O8a new mineral from the Bellerberg volcano, Germany. Minerals, 8(7), 308. https://doi.org/10.3390/min8070308
Aravaite, Ba&lt;sub&gt;2&lt;/sub&gt;Ca&lt;sub&gt;18&lt;/sub&gt;(SiO&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;6&lt;/sub&gt;(PO&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;3&lt;/sub&gt;(CO&lt;sub&gt;3&lt;/sub&gt;)F&lt;sub&gt;3&lt;/sub&gt;O: modular structure and disorder
Krüger, B., Krüger, H., Galuskin, E. V., Galuskina, I. O., Vapnik, Y., Olieric, V., & Pauluhn, A. (2018). Aravaite, Ba2Ca18(SiO4)6(PO4)3(CO3)F3O: modular structure and disorder of a new mineral with single and triple antiperovskite layers. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 74(6), 492-501. https://doi.org/10.1107/S2052520618012271
Structural rearrangements occurring upon cofactor binding in the <i>Mycobacterium smegmatis β</i>-ketoacyl-acyl carrier protein reductase MabA
Küssau, T., Flipo, M., Van Wyk, N., Viljoen, A., Olieric, V., Kremer, L., & Blaise, M. (2018). Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. Acta Crystallographica Section D: Structural Biology, D74(Part 5), 383-393. https://doi.org/10.1107/S2059798318002917
High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses
Lebugle, M., Dworkowski, F., Pauluhn, A., Guzenko, V. A., Romano, L., Meier, N., … David, C. (2018). High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. Applied Optics, 57(30), 9032-9039. https://doi.org/10.1364/AO.57.009032
Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector
Leonarski, F., Redford, S., Mozzanica, A., Lopez-Cuenca, C., Panepucci, E., Nass, K., … Wang, M. (2018). Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nature Methods, 15(10), 799-804. https://doi.org/10.1038/s41592-018-0143-7
Practical approaches for in situ X-ray crystallography: from high-throughput screening to serial data collection
Martiel, I., Olieric, V., Caffrey, M., & Wang, M. (2018). Practical approaches for in situ X-ray crystallography: from high-throughput screening to serial data collection. In K. Beis & G. Evans (Eds.), Chemical biology: Vol. 8. Protein crystallography: challenges and practical solutions (pp. 1-27). https://doi.org/10.1039/9781788010504-00001
The JUNGFRAU detector for applications at synchrotron light sources and XFELs
Mozzanica, A., Andrä, M., Barten, R., Bergamaschi, A., Chiriotti, S., Brückner, M., … Zhang, J. (2018). The JUNGFRAU detector for applications at synchrotron light sources and XFELs. Synchrotron Radiation News, 31(6), 16-20. https://doi.org/10.1080/08940886.2018.1528429
Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
Nogly, P., Weinert, T., James, D., Carbajo, S., Ozerov, D., Furrer, A., … Standfuss, J. (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science, 361(6398), eaat0094 (7 pp.). https://doi.org/10.1126/science.aat0094
Demonstration of femtosecond X-ray pump X-ray probe diffraction on protein crystals
Opara, N. L., Mohacsi, I., Makita, M., Castano-Diez, D., Diaz, A., Juranić, P., … David, C. (2018). Demonstration of femtosecond X-ray pump X-ray probe diffraction on protein crystals. Structural Dynamics, 5(5), 054303 (15 pp.). https://doi.org/10.1063/1.5050618
Free-electron laser data for multiple-particle fluctuation scattering analysis
Pande, K., Donatelli, J. J., Malmerberg, E., Foucar, L., Poon, B. K., Sutter, M., … Zwart, P. H. (2018). Free-electron laser data for multiple-particle fluctuation scattering analysis. Scientific Data, 5, 180201. https://doi.org/10.1038/sdata.2018.201
Operation and performance of the JUNGFRAU photon detector during first FEL and synchrotron experiments
Redford, S., Andrä, M., Barten, R., Bergamaschi, A., Brückner, M., Chiriotti, S., … Zhang, J. (2018). Operation and performance of the JUNGFRAU photon detector during first FEL and synchrotron experiments. Journal of Instrumentation, 13(11), C11006 (9 pp.). https://doi.org/10.1088/1748-0221/13/11/C11006