Active Filters

  • (-) PSI Laboratories ≠ Center for Proton Therapy CPT
  • (-) Keywords = magnetism
Search Results 1 - 20 of 77

Pages

  • RSS Feed
Select Page
μSR investigation of the quasi-elastic magnetic excitations in strongly correlated compounds
Yaouanc, A., Dalmas De Réotier, P., Gubbens, P. C. M., Kaiser, C. T., Bonville, P., Hodges, J. A., … Mihalik, M. (1999). μSR investigation of the quasi-elastic magnetic excitations in strongly correlated compounds. Physica B: Condensed Matter, 259-261, 126-127. https://doi.org/10.1016/S0921-4526(98)01023-0
Measurement of the induced magnetic polarisation of rotated-domain graphene grown on Co film with polarised neutron reflectivity
Aboljadayel, R. O. M., Kinane, C. J., Vaz, C. A. F., Love, D. M., Martin, M. B., Cabrero-Vilatela, A., … Langridge, S. (2023). Measurement of the induced magnetic polarisation of rotated-domain graphene grown on Co film with polarised neutron reflectivity. Nanomaterials, 13(19), 2620 (11 pp.). https://doi.org/10.3390/nano13192620
Emergent magnetism with continuous control in the ultrahigh-conductivity layered oxide PdCoO<sub>2</sub>
Brahlek, M., Mazza, A. R., Annaberdiyev, A., Chilcote, M., Rimal, G., Halász, G. B., … Ward, T. Z. (2023). Emergent magnetism with continuous control in the ultrahigh-conductivity layered oxide PdCoO2. Nano Letters, 23(16), 7279-7287. https://doi.org/10.1021/acs.nanolett.3c01065
Effect of annealing on the magnetic microstructure of high-pressure torsion iron: the relevance of higher-order contributions to the magnetic small-angle neutron scattering cross section
Bersweiler, M., Sato, H., Adachi, N., Todaka, Y., Peral, I., Kohlbrecher, J., … Oba, Y. (2023). Effect of annealing on the magnetic microstructure of high-pressure torsion iron: the relevance of higher-order contributions to the magnetic small-angle neutron scattering cross section. IUCrJ, 10, 411-419. https://doi.org/10.1107/S2052252523003937
Magnetic, magnetocaloric and thermoelectric properties of NdCrGe<sub>3</sub>
Synoradzki, K., Frąckowiak, A., Szewczyk, D., Bednarchuk, T. J., Das, D., & Kaczorowski, D. (2023). Magnetic, magnetocaloric and thermoelectric properties of NdCrGe3. Journal of Alloys and Compounds, 967, 171713 (10 pp.). https://doi.org/10.1016/j.jallcom.2023.171713
Synthesis and anisotropic magnetic properties of LiCrTe<sub>2</sub> single crystals with a triangular-lattice antiferromagnetic structure
Witteveen, C., Nocerino, E., López-Paz, S. A., Jeschke, H. O., Pomjakushin, V. Y., Månsson, M., & von Rohr, F. O. (2023). Synthesis and anisotropic magnetic properties of LiCrTe2 single crystals with a triangular-lattice antiferromagnetic structure. Journal of Physics: Materials, 6(3), 035001 (10 pp.). https://doi.org/10.1088/2515-7639/acd27a
Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and X-ray magnetic circular dichroism
Aboljadayel, R. O. M., Kinane, C. J., Vaz, C. A. F., Love, D. M., Weatherup, R. S., Braeuninger-Weimer, P., … Langridge, S. (2023). Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and X-ray magnetic circular dichroism. ACS Applied Materials and Interfaces, 15(18), 22367-22376. https://doi.org/10.1021/acsami.2c02840
Pressure induced evolution of superconductivity and magnetic hourglass dispersion in Fe<sub>1.02</sub>Te<sub>0.7</sub>Se<sub>0.3</sub>
Lançon, D., Tsyrulin, N., Böhm, M., Viennois, R., Zabihzadeh, S., Kusmartseva, A., … Rønnow, H. M. (2015). Pressure induced evolution of superconductivity and magnetic hourglass dispersion in Fe1.02Te0.7Se0.3. New Journal of Physics, 17, 043020 (5 pp.). https://doi.org/10.1088/1367-2630/17/4/043020
Coexistence of ferromagnetism and superconductivity in noncentrosymmetric materials with cubic symmetry
Neupert, T., & Sigrist, M. (2011). Coexistence of ferromagnetism and superconductivity in noncentrosymmetric materials with cubic symmetry. Journal of the Physical Society of Japan, 80(11), 114712 (5 pp.). https://doi.org/10.1143/JPSJ.80.114712
Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu<sub>2</sub>
Mielke III, C., Liu, H., Das, D., Yin, J. X., Deng, L. Z., Spring, J., … Guguchia, Z. (2022). Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu2. Journal of Physics: Condensed Matter, 34(48), 485601 (8 pp.). https://doi.org/10.1088/1361-648X/ac9813
Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains
Wäckerlin, C., Cahlík, A., Goikoetxea, J., Stetsovych, O., Medvedeva, D., Redondo, J., … Jelínek, P. (2022). Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano, 16(10), 16402-16413. https://doi.org/10.1021/acsnano.2c05609
First principles study of 3<em>d</em> transition metal doped Cu<sub>3</sub>N
Cui, X. Y., Soon, A., Phillips, A. E., Zheng, R. K., Liu, Z. W., Delley, B., … Stampfl, C. (2012). First principles study of 3d transition metal doped Cu3N. Journal of Magnetism and Magnetic Materials, 324(19), 3138-3143. https://doi.org/10.1016/j.jmmm.2012.05.021
Magnetic properties of Ho<sub>0.1</sub>Sr<sub>0.9</sub>CoO<sub>3-<em>x</em></sub> perovskites (0.15≤<em>x</em>≤0.49)
Streule, S., Podlesnyak, A., Conder, K., Golosova, N., & Mitberg, E. (2004). Magnetic properties of Ho0.1Sr0.9CoO3-x perovskites (0.15≤x≤0.49). Journal of Magnetism and Magnetic Materials, 272-276(Suppl. 1), e457-e458. https://doi.org/10.1016/j.jmmm.2003.11.398
Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments
Khasanov, R., Urquhart, R., Elender, M., & Kamenev, K. (2022). Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments. High Pressure Research, 42(1), 29-46. https://doi.org/10.1080/08957959.2021.2013835
Combined pressure and magnetic-field induced caloric effects in Fe<sub>7</sub>Se<sub>8</sub> single crystals
Konopelnyk, Y., Radelytskyi, I., Iwanowski, P., Gawryluk, D. J., Berkowski, M., Diduszko, R., … Puzniak, R. (2022). Combined pressure and magnetic-field induced caloric effects in Fe7Se8 single crystals. Journal of Magnetism and Magnetic Materials, 543, 168626 (11 pp.). https://doi.org/10.1016/j.jmmm.2021.168626
Crystal structure and magnetic properties of the layered hybrid organic-inorganic compounds <em>M</em><sub>2</sub>(OH)<sub>2</sub>(C<sub>14</sub>H<sub>8</sub>O<sub>4</sub>) (<em>M</em> = Mn, Fe)
Sibille, R., Mazet, T., Diop, L. V. B., & Francois, M. (2021). Crystal structure and magnetic properties of the layered hybrid organic-inorganic compounds M2(OH)2(C14H8O4) (M = Mn, Fe). Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 77, 801-807. https://doi.org/10.1107/S2052520621007988
Probing spin fluctuations in NaOsO<sub>3</sub> by muon spin rotation and NMR spectroscopy
Gurung, N., Wang, C., Bingham, N. S., Verezhak, J. A. T., Yamaura, K., Allodi, G., … Scagnoli, V. (2021). Probing spin fluctuations in NaOsO3 by muon spin rotation and NMR spectroscopy. Journal of Physics: Condensed Matter, 33(33), 335802 (8 pp.). https://doi.org/10.1088/1361-648X/ac06eb
Absence of local moments in the kagome metal KV<sub>3</sub>Sb<sub>5</sub> as determined by muon spin spectroscopy
Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D., & Graf, M. (2021). Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. Journal of Physics: Condensed Matter, 33, 235801 (5 pp.). https://doi.org/10.1088/1361-648X/abe8f9
Exchange interactions and curie temperature of Ce-substituted SmCo&lt;sub&gt;5&lt;/sub&gt;
Jekal, S. (2019). Exchange interactions and curie temperature of Ce-substituted SmCo5. Condensed Matter, 4(1), 11 (8 pp.). https://doi.org/10.3390/condmat4010011
Direct imaging of high-frequency multimode spin wave propagation in cobalt-iron waveguides using X-Ray microscopy beyond 10 GHz
Träger, N., Gruszecki, P., Lisiecki, F., Förster, J., Weigand, M., Wintz, S., … Gräfe, J. (2020). Direct imaging of high-frequency multimode spin wave propagation in cobalt-iron waveguides using X-Ray microscopy beyond 10 GHz. Physica Status Solidi: Rapid Research Letters, 14, 2000373 (5 pp.). https://doi.org/10.1002/pssr.202000373
 

Pages