| Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters
Aksu, M., Kumar, P., Güttler, T., Taxer, W., Gregor, K., Mußil, B., … Görlich, D. (2024). Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters. Antiviral Research, 221, 105778 (21 pp.). https://doi.org/10.1016/j.antiviral.2023.105778 |
| Synthesis of pyrazole-based macrocycles leads to a highly selective inhibitor for MST3
Amrhein, J. A., Berger, L. M., Balourdas, D. I., Joerger, A. C., Menge, A., Krämer, A., … Hanke, T. (2024). Synthesis of pyrazole-based macrocycles leads to a highly selective inhibitor for MST3. Journal of Medicinal Chemistry, 67(1), 674-690. https://doi.org/10.1021/acs.jmedchem.3c01980 |
| Development of a series of pyrrolopyridone MAT2A inhibitors
Atkinson, S. J., Bagal, S. K., Argyrou, A., Askin, S., Cheung, T., Chiarparin, E., … Williamson, B. (2024). Development of a series of pyrrolopyridone MAT2A inhibitors. Journal of Medicinal Chemistry, 67(6), 4541-4559. https://doi.org/10.1021/acs.jmedchem.3c01860 |
| Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators
Balourdas, D. I., Markl, A. M., Krämer, A., Settanni, G., & Joerger, A. C. (2024). Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death & Disease, 15(6), 408. https://doi.org/10.1038/s41419-024-06739-x |
| Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase
Baltgalvis, K. A., Lamb, K. N., Symons, K. T., Wu, C. C., Hoffman, M. A., Snead, A. N., … Kinsella, T. M. (2024). Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature, 629(8011), 435-442. https://doi.org/10.1038/s41586-024-07318-y |
| Viral peptide conjugates for metal-warhead delivery to chromatin
Batchelor, L. K., De Falco, L., Dyson, P. J., & Davey, C. A. (2024). Viral peptide conjugates for metal-warhead delivery to chromatin. RSC Advances, 14(13), 8718-8725. https://doi.org/10.1039/d4ra01617c |
| Development of potent dual BET/HDAC inhibitors via pharmacophore merging and structure-guided optimization
Bauer, N., Balourdas, D. I., Schneider, J. R., Zhang, X., Berger, L. M., Berger, B. T., … Joerger, A. C. (2024). Development of potent dual BET/HDAC inhibitors via pharmacophore merging and structure-guided optimization. ACS Chemical Biology, 19(2), 266-279. https://doi.org/10.1021/acschembio.3c00427 |
| Probing protein-ligand methyl−π interaction geometries through chemical shift measurements of selectively labeled methyl groups
Beier, A., Platzer, G., Höfurthner, T., Ptaszek, A. L., Lichtenecker, R. J., Geist, L., … Konrat, R. (2024). Probing protein-ligand methyl−π interaction geometries through chemical shift measurements of selectively labeled methyl groups. Journal of Medicinal Chemistry, 67(15), 13187-13196. https://doi.org/10.1021/acs.jmedchem.4c01128 |
| Primordial magnetotaxis in putative giant paleoproterozoic magnetofossils
Bellon, U. D., Williams, W., Trindade, R. I. F., Maldanis, L., & Galante, D. (2024). Primordial magnetotaxis in putative giant paleoproterozoic magnetofossils. Proceedings of the National Academy of Sciences of the United States of America PNAS, 121(23), e2319148121 (10 pp.). https://doi.org/10.1073/pnas.2319148121 |
| PROTACs targeting BRM (SMARCA2) afford selective <em>In vivo</em> degradation over BRG1 (SMARCA4) and are active in BRG1 mutant xenograft tumor models
Berlin, M., Cantley, J., Bookbinder, M., Bortolon, E., Broccatelli, F., Cadelina, G., … Dragovich, P. S. (2024). PROTACs targeting BRM (SMARCA2) afford selective In vivo degradation over BRG1 (SMARCA4) and are active in BRG1 mutant xenograft tumor models. Journal of Medicinal Chemistry, 67, 1262-1313. https://doi.org/10.1021/acs.jmedchem.3c01781 |
| A tiny pocket packs a punch: leveraging pyridones for the discovery of CNS-penetrant aza-indazole IRAK4 inhibitors
Bolduc, P. N., Pfaffenbach, M., Evans, R., Xin, Z., Henry, K. L., Gao, F., … Peterson, E. A. (2024). A tiny pocket packs a punch: leveraging pyridones for the discovery of CNS-penetrant aza-indazole IRAK4 inhibitors. ACS Medicinal Chemistry Letters, 15(5), 714-721. https://doi.org/10.1021/acsmedchemlett.4c00102 |
| Evolution-inspired engineering of nonribosomal peptide synthetases
Bozhüyük, K. A. J., Präve, L., Kegler, C., Schenk, L., Kaiser, S., Schelhas, C., … Bode, H. B. (2024). Evolution-inspired engineering of nonribosomal peptide synthetases. Science, 383(6689), eadg4320 (11 pp.). https://doi.org/10.1126/science.adg4320 |
| A novel <em>O-</em> and <em>S</em>-methyltransferase from <em>Pleurotus </em>sapidus is involved in flavor formation
Brescia, F. F., Korf, L., Essen, L. O., Zorn, H., & Ruehl, M. (2024). A novel O- and S-methyltransferase from Pleurotus sapidus is involved in flavor formation. Journal of Agricultural and Food Chemistry, 72(12), 6471-6480. https://doi.org/10.1021/acs.jafc.3c08849 |
| Discovery and optimization of pyridazinones as PI3K<em>δ</em> selective inhibitors for administration by inhalation
Bruno, P., Micoli, A., Corsi, M., Pala, D., Guariento, S., Fiorelli, C., … Capelli, A. M. (2024). Discovery and optimization of pyridazinones as PI3Kδ selective inhibitors for administration by inhalation. Journal of Medicinal Chemistry, 67, 11103-11124. https://doi.org/10.1021/acs.jmedchem.4c00610 |
| 1,4-pyrazolyl-containing SAFit-analogues are selective FKBP51 inhibitors with improved ligand efficiency and drug-like profile
Buffa, V., Meyners, C., Sugiarto, W. O., Bauder, M., Gaali, S., & Hausch, F. (2024). 1,4-pyrazolyl-containing SAFit-analogues are selective FKBP51 inhibitors with improved ligand efficiency and drug-like profile. ChemMedChem, 19(17), e202400264 (23 pp.). https://doi.org/10.1002/cmdc.202400264 |
| Development of potent and selective monoacylglycerol lipase inhibitors. SARs, structural analysis, and biological characterization
Butini, S., Grether, U., Jung, K. M., Ligresti, A., Allarà, M., Postmus, A. G. J., … Campiani, G. (2024). Development of potent and selective monoacylglycerol lipase inhibitors. SARs, structural analysis, and biological characterization. Journal of Medicinal Chemistry, 67(3), 1758-1782. https://doi.org/10.1021/acs.jmedchem.3c01278 |
| Ligandability assessment of the C-terminal Rel-homology domain of NFAT1
Böttcher, J., Fuchs, J. E., Mayer, M., Kahmann, J., Zak, K. M., Wunberg, T., … Kessler, D. (2024). Ligandability assessment of the C-terminal Rel-homology domain of NFAT1. Archiv der Pharmazie, 357(6), 2300649 (7 pp.). https://doi.org/10.1002/ardp.202300649 |
| Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the SARS-CoV-2 main protease with cellular antiviral activity
Carney, D. W., Leffler, A. E., Bell, J. A., Chandrasinghe, A. S., Cheng, C., Chang, E., … Vafaei, S. (2024). Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the SARS-CoV-2 main protease with cellular antiviral activity. Bioorganic and Medicinal Chemistry, 103, 117577 (27 pp.). https://doi.org/10.1016/j.bmc.2023.117577 |
| Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers
Chapeau, E. A., Sansregret, L., Galli, G. G., Chène, P., Wartmann, M., Mourikis, T. P., … Schmelzle, T. (2024). Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers. Nature Cancer, 5(7), 1102-1120. https://doi.org/10.1038/s43018-024-00754-9 |
| Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC
Chikunova, A., Manley, M. P., Heijjer, C. N., Drenth, C. S., Cramer‐Blok, A. J., Ahmad, M. U. D., … Ubbink, M. (2024). Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC. Protein Science, 33(4). https://doi.org/10.1002/pro.4972 |