Active Filters

  • (-) Beamlines = Gantry1
Search Results 1 - 13 of 13
  • RSS Feed
Select Page
Dosimetric and biologic intercomparison between electron and proton FLASH beams
Almeida, A., Togno, M., Ballesteros-Zebadua, P., Franco-Perez, J., Geyer, R., Schaefer, R., … Vozenin, M. C. (2024). Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiotherapy and Oncology, 190, 109953 (8 pp.). https://doi.org/10.1016/j.radonc.2023.109953
Quality of life, clinical, and patient-reported outcomes after pencil Beam Scanning Proton Therapy delivered for intracranial grade WHO 1–2 meningioma in children and adolescents
García-Marqueta, M., Vázquez, M., Krcek, R., Kliebsch, U. L., Baust, K., Leiser, D., … Weber, D. C. (2023). Quality of life, clinical, and patient-reported outcomes after pencil Beam Scanning Proton Therapy delivered for intracranial grade WHO 1–2 meningioma in children and adolescents. Cancers, 15(18), 4447 (18 pp.). https://doi.org/10.3390/cancers15184447
Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates
Motta, S., Christensen, J. B., Togno, M., Schäfer, R., Safai, S., Lomax, A. J., & Yukihara, E. G. (2023). Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates. Physics in Medicine and Biology, 68(4), 045017 (13 pp.). https://doi.org/10.1088/1361-6560/acb634
<em>In situ </em>correction of recombination effects in ultra-high dose rate irradiations with protons
Schaefer, R., Psoroulas, S., & Weber, D. C. (2023). In situ correction of recombination effects in ultra-high dose rate irradiations with protons. Physics in Medicine and Biology, 68(10), 105013 (11 pp.). https://doi.org/10.1088/1361-6560/accf5c
Comparing radiolytic production of H<sub>2</sub>O<sub>2</sub> and development of zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams
Kacem, H., Psoroulas, S., Boivin, G., Folkerts, M., Grilj, V., Lomax, T., … Vozenin, M. C. (2022). Comparing radiolytic production of H2O2 and development of zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams. Radiotherapy and Oncology, 175, 197-202. https://doi.org/10.1016/j.radonc.2022.07.011
Al<sub>2</sub>O<sub>3</sub>:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry
Christensen, J. B., Togno, M., Nesteruk, K. P., Psoroulas, S., Meer, D., Weber, D. C., … Safai, S. (2021). Al2O3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Physics in Medicine and Biology, 66(8), 085003 (11 pp.). https://doi.org/10.1088/1361-6560/abe554
A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry
Maradia, V., Meer, D., Weber, D. C., Lomax, A. J., Schippers, J. M., & Psoroulas, S. (2021). A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry. Medical Physics, 48(12), 7613-7622. https://doi.org/10.1002/mp.15278
Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH)
Nesteruk, K. P., Togno, M., Grossmann, M., Lomax, A. J., Weber, D. C., Schippers, J. M., … Psoroulas, S. (2021). Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Medical Physics, 48(7), 4017-4026. https://doi.org/10.1002/mp.14933
Flash irradiation with proton beams: Beam characteristics and their implications for beam diagnostics
Nesteruk, K. P., & Psoroulas, S. (2021). Flash irradiation with proton beams: Beam characteristics and their implications for beam diagnostics. Applied Sciences, 11(5), 2170 (11 pp.). https://doi.org/10.3390/app11052170
Imaging dose assessment for IGRT in particle beam therapy. IGRT in particle beam therapy
Steiner, E., Stock, M., Kostresevic, B., Ableitinger, A., Jelen, U., Prokesch, H., … Georg, D. (2013). Imaging dose assessment for IGRT in particle beam therapy. IGRT in particle beam therapy. Radiotherapy and Oncology, 109(3), 409-413. https://doi.org/10.1016/j.radonc.2013.09.007
Temporal lobe toxicity analysis after proton radiation therapy for skull base tumors
Pehlivan, B., Ares, C., Lomax, A. J., Stadelmann, O., Goitein, G., Timmermann, B., … Hug, E. B. (2012). Temporal lobe toxicity analysis after proton radiation therapy for skull base tumors. International Journal of Radiation Oncology Biology Physics, 83(5), 1432-1440. https://doi.org/10.1016/j.ijrobp.2011.10.042
Discrete event simulation of a proton therapy facility: a case study
Corazza, U., Filippini, R., & Setola, R. (2011). Discrete event simulation of a proton therapy facility: a case study. Computer Methods and Programs in Biomedicine, 102(3), 305-316. https://doi.org/10.1016/j.cmpb.2010.05.011
Emerging technologies in proton therapy
Schippers, J. M., & Lomax, A. J. (2011). Emerging technologies in proton therapy. Acta Oncologica, 50(6), 838-850. https://doi.org/10.3109/0284186X.2011.582513