Active Filters

  • (-) Beamlines = PXII
Search Results 1 - 20 of 1,420

Pages

  • RSS Feed
Select Page
Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop
Abel, A. C., Mühlethaler, T., Dessin, C., Schachtsiek, T., Sammet, B., Sharpe, T., … Prota, A. E. (2024). Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop. Journal of Biological Chemistry, 300(6), 107363 (10 pp.). https://doi.org/10.1016/j.jbc.2024.107363
Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters
Aksu, M., Kumar, P., Güttler, T., Taxer, W., Gregor, K., Mußil, B., … Görlich, D. (2024). Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters. Antiviral Research, 221, 105778 (21 pp.). https://doi.org/10.1016/j.antiviral.2023.105778
Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase
Baltgalvis, K. A., Lamb, K. N., Symons, K. T., Wu, C. C., Hoffman, M. A., Snead, A. N., … Kinsella, T. M. (2024). Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature, 629(8011), 435-442. https://doi.org/10.1038/s41586-024-07318-y
Development of potent and selective monoacylglycerol lipase inhibitors. SARs, structural analysis, and biological characterization
Butini, S., Grether, U., Jung, K. M., Ligresti, A., Allarà, M., Postmus, A. G. J., … Campiani, G. (2024). Development of potent and selective monoacylglycerol lipase inhibitors. SARs, structural analysis, and biological characterization. Journal of Medicinal Chemistry, 67(3), 1758-1782. https://doi.org/10.1021/acs.jmedchem.3c01278
Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the SARS-CoV-2 main protease with cellular antiviral activity
Carney, D. W., Leffler, A. E., Bell, J. A., Chandrasinghe, A. S., Cheng, C., Chang, E., … Vafaei, S. (2024). Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the SARS-CoV-2 main protease with cellular antiviral activity. Bioorganic and Medicinal Chemistry, 103, 117577 (27 pp.). https://doi.org/10.1016/j.bmc.2023.117577
Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers
Chapeau, E. A., Sansregret, L., Galli, G. G., Chène, P., Wartmann, M., Mourikis, T. P., … Schmelzle, T. (2024). Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers. Nature Cancer, 5(7), 1102-1120. https://doi.org/10.1038/s43018-024-00754-9
Discovery of JNJ-74856665: a novel isoquinolinone DHODH inhibitor for the treatment of AML
DeRatt, L. G., Zhang, Z., Pietsch, C., Cisar, J. S., Zhang, X., Wang, W., … Kuduk, S. D. (2024). Discovery of JNJ-74856665: a novel isoquinolinone DHODH inhibitor for the treatment of AML. Journal of Medicinal Chemistry, 67, 11254-11272. https://doi.org/10.1021/acs.jmedchem.4c00809
Discovery of alternative binding poses through fragment-based identification of DHODH inhibitors
DeRatt, L. G., Pietsch, E. C., Cisar, J. S., Jacoby, E., Kazmi, F., Matico, R., … Kuduk, S. D. (2024). Discovery of alternative binding poses through fragment-based identification of DHODH inhibitors. ACS Medicinal Chemistry Letters, 15(3), 381-387. https://doi.org/10.1021/acsmedchemlett.3c00543
Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers
Ferretti, S., Hamon, J., de Kanter, R., Scheufler, C., Andraos-Rey, R., Barbe, S., … Cortés-Cros, M. (2024). Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature, 629(8011), 443-449. https://doi.org/10.1038/s41586-024-07350-y
Mutational and structural studies of (βα)<sub>8</sub>-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism
Gehl, M., Demmer, U., Ermler, U., & Shima, S. (2024). Mutational and structural studies of (βα)8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism. Protein Science, 33(6), e5018 (18 pp.). https://doi.org/10.1002/pro.5018
Capturing the blue-light activated state of the Phot-LOV1 domain from <em>Chlamydomonas reinhardtii </em>using time-resolved serial synchrotron crystallography
Gotthard, G., Mous, S., Weinert, T., Maia, R. N. A., James, D., Dworkowski, F., … Nogly, P. (2024). Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography. IUCrJ, 11(5) (17 pp.). https://doi.org/10.1107/S2052252524005608
Development of a first-in-class antibody and a specific assay for α-1,6-fucosylated prostate-specific antigen
Halldórsson, S., Hillringhaus, L., Hojer, C., Muranyi, A., Schraeml, M., Swiatek-de Lange, M., & Tabarés, G. (2024). Development of a first-in-class antibody and a specific assay for α-1,6-fucosylated prostate-specific antigen. Scientific Reports, 14(1), 16512 (11 pp.). https://doi.org/10.1038/s41598-024-67545-1
Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals
Huang, C. Y., Aumonier, S., Olieric, V., & Wang, M. (2024). Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals. Acta Crystallographica Section D: Structural Biology, 80(8), 620-628. https://doi.org/10.1107/S2059798324006697
Recording physiological history of cells with chemical labeling
Huppertz, M. C., Wilhelm, J., Grenier, V., Schneider, M. W., Falt, T., Porzberg, N., … Johnsson, K. (2024). Recording physiological history of cells with chemical labeling. Science, 383(6685), 890-897. https://doi.org/10.1126/science.adg0812
Synthesis, activity, and their relationships of 2,4-diaminonicotinamide derivatives as EGFR inhibitors targeting C797S mutation
Kageji, H., Momose, T., Nagamoto, Y., Togashi, N., Yasumatsu, I., Nishikawa, Y., … Naito, H. (2024). Synthesis, activity, and their relationships of 2,4-diaminonicotinamide derivatives as EGFR inhibitors targeting C797S mutation. Bioorganic and Medicinal Chemistry Letters, 98, 129575 (7 pp.). https://doi.org/10.1016/j.bmcl.2023.129575
Antitumor activity of Tasurgratinib as an orally available FGFR1-3 inhibitor in Cholangiocarcinoma models with FGFR2-fusion
Kawano, S., Kawada, M. I., Fukushima, S., Arai, Y., Shibata, T., & Miyano, S. W. (2024). Antitumor activity of Tasurgratinib as an orally available FGFR1-3 inhibitor in Cholangiocarcinoma models with FGFR2-fusion. Anticancer Research, 44(6), 2393-2406. https://doi.org/10.21873/anticanres.17046
Microsecond timescale conformational dynamics of a small-molecule ligand within the active site of a protein
Kotschy, J., Söldner, B., Singh, H., Vasa, S. K., & Linser, R. (2024). Microsecond timescale conformational dynamics of a small-molecule ligand within the active site of a protein. Angewandte Chemie International Edition, 63(5), e202313947 (6 pp.). https://doi.org/10.1002/anie.202313947
Design principles for cyclin K molecular glue degraders
Kozicka, Z., Suchyta, D. J., Focht, V., Kempf, G., Petzold, G., Jentzsch, M., … Thomä, N. H. (2024). Design principles for cyclin K molecular glue degraders. Nature Chemical Biology, 20(1), 93-102. https://doi.org/10.1038/s41589-023-01409-z
UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2
Langer, L. M., Kurscheidt, K., Basquin, J., Bonneau, F., Iermak, I., Basquin, C., & Conti, E. (2024). UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2. Nucleic Acids Research, 52(10), 6036-6048. https://doi.org/10.1093/nar/gkae323
Structure-based optimization of selective and brain penetrant CK1δ inhibitors for the treatment of circadian disruptions
McCarver, S., Hanna, L., Samant, A., Thompson, A. A., Seierstad, M., Saha, A., … Shireman, B. T. (2024). Structure-based optimization of selective and brain penetrant CK1δ inhibitors for the treatment of circadian disruptions. ACS Medicinal Chemistry Letters, 15(4), 486-492. https://doi.org/10.1021/acsmedchemlett.3c00523
 

Pages