Active Filters

  • (-) Beamlines = PXII
  • (-) Journals = ACS Chemical Biology
Search Results 1 - 16 of 16
  • RSS Feed
Select Page
Biochemical and structural characterization of a peptidic inhibitor of the YAP:TEAD interaction that binds to the α-Helix Pocket on TEAD
Mesrouze, Y., Gubler, H., Villard, F., Boesch, R., Ottl, J., Kallen, J., … Chène, P. (2023). Biochemical and structural characterization of a peptidic inhibitor of the YAP:TEAD interaction that binds to the α-Helix Pocket on TEAD. ACS Chemical Biology, 18(3), 643-651. https://doi.org/10.1021/acschembio.2c00936
Dichlorophenylpyridine-based molecules inhibit furin through an induced-fit mechanism
Dahms, S. O., Schnapp, G., Winter, M., Büttner, F. H., Schlepütz, M., Gnamm, C., … Brandstetter, H. (2022). Dichlorophenylpyridine-based molecules inhibit furin through an induced-fit mechanism. ACS Chemical Biology, 17(4), 816-821. https://doi.org/10.1021/acschembio.2c00103
A phenotypic screen identifies potent DPP9 inhibitors capable of killing HIV-1 infected cells
Moore, K. P., Schwaid, A. G., Tudor, M., Park, S., Beshore, D. C., Converso, A., … Balibar, C. J. (2022). A phenotypic screen identifies potent DPP9 inhibitors capable of killing HIV-1 infected cells. ACS Chemical Biology, 17(9), 2595-2604. https://doi.org/10.1021/acschembio.2c00515
Discovery and structural characterization of ATP-site ligands for the wild-type and V617F mutant JAK2 pseudokinase domain
McNally, R., Li, Q., Li, K., Dekker, C., Vangrevelinghe, E., Jones, M., … Eck, M. J. (2019). Discovery and structural characterization of ATP-site ligands for the wild-type and V617F mutant JAK2 pseudokinase domain. ACS Chemical Biology, 14(4), 587-593. https://doi.org/10.1021/acschembio.8b00722
DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome
Richter, H., Satz, A. L., Bedoucha, M., Buettelmann, B., Petersen, A. C., Harmeier, A., … Prunotto, M. (2019). DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chemical Biology, 14(1), 37-49. https://doi.org/10.1021/acschembio.8b00866
Structural details of light activation of the LOV2-based photoswitch PA-Rac1
Winkler, A., Barends, T. R. M., Udvarhelyi, A., Lenherr-Frey, D., Lomb, L., Menzel, A., & Schlichting, I. (2015). Structural details of light activation of the LOV2-based photoswitch PA-Rac1. ACS Chemical Biology, 10(2), 502-509. https://doi.org/10.1021/cb500744m
Determination of proteinligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry
Cubrilovic, D., Haap, W., Barylyuk, K., Ruf, A., Badertscher, M., Gubler, M., … Zenobi, R. (2014). Determination of proteinligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chemical Biology, 9(1), 218-226. https://doi.org/10.1021/cb4007002
Crystal structure of <em>Bacillus cereus</em> class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI
Hammerstad, M., Hersleth, H. P., Tomter, A. B., Røhr, Å. K., & Andersson, K. K. (2014). Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI. ACS Chemical Biology, 9(2), 526-537. https://doi.org/10.1021/cb400757h
CH-<em>π</em> "T-shape" interaction with histidine explains binding of aromatic galactosides to <em>Pseudomonas aeruginosa</em> lectin LecA
Kadam, R. U., Garg, D., Schwartz, J., Visini, R., Sattler, M., Stocker, A., … Reymond, J. L. (2013). CH-π "T-shape" interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA. ACS Chemical Biology, 8(9), 1925-1930. https://doi.org/10.1021/cb400303w
Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers
Molzan, M., Kasper, S., Röglin, L., Skwarczynska, M., Sassa, T., Inoue, T., … Ottmann, C. (2013). Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chemical Biology, 8(9), 1869-1875. https://doi.org/10.1021/cb4003464
Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase
Tortorici, M., Borrello, M. T., Tardugno, M., Chiarelli, L. R., Pilotto, S., Ciossani, G., … Mattevi, A. (2013). Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase. ACS Chemical Biology, 8(8), 1677-1682. https://doi.org/10.1021/cb4001926
Cytochrome P450<sub>sky</sub> interacts directly with the nonribosomal peptide synthetase to generate three amino acid precursors in skyllamycin biosynthesis
Uhlmann, S., Süssmuth, R. D., & Cryle, M. J. (2013). Cytochrome P450sky interacts directly with the nonribosomal peptide synthetase to generate three amino acid precursors in skyllamycin biosynthesis. ACS Chemical Biology, 8(11), 2586-2596. https://doi.org/10.1021/cb400555e
<em>De novo</em> design of protein kinase inhibitors by <em>in silico</em> identification of hinge region-binding fragments
Urich, R., Wishart, G., Kiczun, M., Richters, A., Tidten-Luksch, N., Rauh, D., … Brenk, R. (2013). De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. ACS Chemical Biology, 8(5), 1044-1052. https://doi.org/10.1021/cb300729y
Targeting GSK3 from <em>Ustilago maydis</em>: Type-II kinase inhibitors as potential antifungals
Grütter, C., Simard, J. R., Mayer-Wrangowski, S. C., Schreier, P. H., Pérez-Martín, J., Richters, A., … Rauh, D. (2012). Targeting GSK3 from Ustilago maydis: Type-II kinase inhibitors as potential antifungals. ACS Chemical Biology, 7(7), 1257-1267. https://doi.org/10.1021/cb300128b
Selective targeting of disease-relevant protein binding domains by <em>O</em>-phosphorylated natural product derivatives
Gräber, M., Janczyk, W., Sperl, B., Elumalai, N., Kozany, C., Hausch, F., … Berg, T. (2011). Selective targeting of disease-relevant protein binding domains by O-phosphorylated natural product derivatives. ACS Chemical Biology, 6(10), 1008-1014. https://doi.org/10.1021/cb2001796
Identification of <em>Ustilago maydis</em> Aurora kinase as a novel antifungal target
Tückmantel, S., Greul, J. N., Janning, P., Brockmeyer, A., Grütter, C., Simard, J. R., … Schreier, P. H. (2011). Identification of Ustilago maydis Aurora kinase as a novel antifungal target. ACS Chemical Biology, 6(9), 926-933. https://doi.org/10.1021/cb200112y