Active Filters

  • (-) Beamlines = Super-XAS
  • (-) Publication Status ≠ In Press
  • (-) Full Text = Restricted
Search Results 1 - 20 of 307

Pages

  • RSS Feed
Select Page
Aminations of aryl halides using nitroaromatics as coupling partners: overcoming the hydrodehalogenation pathway under a hydrogen atmosphere in water
Ansari, T. N., Choudhary, R. H., Nachtegaal, M., Clark, A. H., Plummer, S. V., Jasinki, J. B., … Handa, S. (2024). Aminations of aryl halides using nitroaromatics as coupling partners: overcoming the hydrodehalogenation pathway under a hydrogen atmosphere in water. ACS Catalysis, 4099-4107. https://doi.org/10.1021/acscatal.3c06351
Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst
Bajada, M. A., Di Liberto, G., Tosoni, S., Ruta, V., Mino, L., Allasia, N., … Vilé, G. (2023). Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst. Nature Synthesis, 2, 1092-1103. https://doi.org/10.1038/s44160-023-00341-3
Active site descriptors from <sup>95</sup>Mo NMR signatures of silica-supported Mo-based olefin metathesis catalysts
Berkson, Z. J., Zhu, R., Ehinger, C., Lätsch, L., Schmid, S. P., Nater, D., … Copéret, C. (2023). Active site descriptors from 95Mo NMR signatures of silica-supported Mo-based olefin metathesis catalysts. Journal of the American Chemical Society, 145(23), 12651-12662. https://doi.org/10.1021/jacs.3c02201
Surface redox dynamics in gold-zinc CO<sub>2</sub> hydrogenation catalysts
Docherty, S. R., Safonova, O. V., & Copéret, C. (2023). Surface redox dynamics in gold-zinc CO2 hydrogenation catalysts. Journal of the American Chemical Society, 145(25), 13526-13530. https://doi.org/10.1021/jacs.3c03522
Unveiling the (de-)lithiation mechanism of nano-sized LiMn<sub>2</sub>O<sub>4</sub> allows the design of a cycling protocol for achieving long-term cycling stability
Falqueto, J. B., Clark, A. H., Kondracki, Ł., Bocchi, N., & El Kazzi, M. (2023). Unveiling the (de-)lithiation mechanism of nano-sized LiMn2O4 allows the design of a cycling protocol for achieving long-term cycling stability. Journal of Materials Chemistry A, 11, 24800-24811. https://doi.org/10.1039/D3TA04660E
Observations of ethylene-for-CO ligand exchanges on a zeolite-supported single-site Rh catalyst by x-ray absorption spectroscopy
Hoffman, A. S., Müller, O., Hong, J., Canning, G. A., Fang, C. Y., Perez-Aguilar, J. E., … Bare, S. R. (2023). Observations of ethylene-for-CO ligand exchanges on a zeolite-supported single-site Rh catalyst by x-ray absorption spectroscopy. Journal of Physical Chemistry Letters, 14(9), 4591-4599. https://doi.org/10.1021/acs.jpclett.3c00349
Activation of molecular oxygen over binuclear iron centers in Al-rich *BEA zeolite
Kornas, A., Tabor, E., Wierzbicki, D. K., Olszowka, J. E., Pilar, R., Dedecek, J., … Mlekodaj, K. (2023). Activation of molecular oxygen over binuclear iron centers in Al-rich *BEA zeolite. Applied Catalysis B: Environmental, 336, 122915 (11 pp.). https://doi.org/10.1016/j.apcatb.2023.122915
A direct pathway for the coupling of arenes and alkylamines via a heterogeneous zeolite-based photocatalyst
Lemmens, V., Janssens, K., Gascon, J., & De Vos, D. E. (2023). A direct pathway for the coupling of arenes and alkylamines via a heterogeneous zeolite-based photocatalyst. Green Chemistry, 25(13), 5113-5122. https://doi.org/10.1039/d3gc01225e
A review of in situ/operando studies of heterogeneous catalytic hydrogenation of CO<sub>2</sub> to methanol
Li, Y., & Wu, Z. (2023). A review of in situ/operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catalysis Today, 420, 114029 (18 pp.). https://doi.org/10.1016/j.cattod.2023.02.006
Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia
Liu, H., Timoshenko, J., Bai, L., Li, Q., Rüscher, M., Sun, C., … Luo, J. (2023). Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catalysis, 13(2), 1513-1521. https://doi.org/10.1021/acscatal.2c03004
Molecular dynamics and structural studies of zinc chloroquine complexes
Paulikat, M., Vitone, D., Schackert, F. K., Schuth, N., Barbanente, A., Piccini, G. M., … Arnesano, F. (2023). Molecular dynamics and structural studies of zinc chloroquine complexes. Journal of Chemical Information and Modeling, 63(1), 161-172. https://doi.org/10.1021/acs.jcim.2c01164
Spatially-resolved investigation of CO<sub>2</sub> methanation over Ni/γ-Al<sub>2</sub>O<sub>3</sub> and Ni<sub>3.2</sub>Fe/γ-Al<sub>2</sub>O<sub>3</sub> catalysts in a packed-bed reactor
Shirsath, A. B., Schulte, M. L., Kreitz, B., Tischer, S., Grunwaldt, J. D., & Deutschmann, O. (2023). Spatially-resolved investigation of CO2 methanation over Ni/γ-Al2O3 and Ni3.2Fe/γ-Al2O3 catalysts in a packed-bed reactor. Chemical Engineering Journal, 469, 143847 (13 pp.). https://doi.org/10.1016/j.cej.2023.143847
Layered Na<sub>2</sub>Mn<sub>3</sub>O<sub>7</sub> decorated by Cerium as the robust catalysts for efficient low temperature soot combustion
Yu, D., Yu, X., Zhang, C., Wang, L., Fan, X., Zhao, Z., … Sojka, Z. (2023). Layered Na2Mn3O7 decorated by Cerium as the robust catalysts for efficient low temperature soot combustion. Applied Catalysis B: Environmental, 338, 123022 (17 pp.). https://doi.org/10.1016/j.apcatb.2023.123022
Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts
Yue, Y., Wang, S., Zhou, Q., Wang, B., Jin, C., Chang, R., … Li, X. (2023). Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts. ACS Catalysis, 13(14), 9777-9791. https://doi.org/10.1021/acscatal.3c01527
Promotion effects of alkali metals on iron molybdate catalysts for CO<sub>2</sub> catalytic hydrogenation
Zhou, Y., Sadia Traore, A., Peron, D. V., Barrios, A. J., Chernyak, S. A., Corda, M., … Khodakov, A. Y. (2023). Promotion effects of alkali metals on iron molybdate catalysts for CO2 catalytic hydrogenation. Journal of Energy Chemistry, 85, 291-300. https://doi.org/10.1016/j.jechem.2023.06.019
TEMPO-Ru-BEA composite material for the selective oxidation of alcohols to aldehydes
Deng, J., Ben Tayeb, K., Dong, C., Simon, P., Marinova, M., Dubois, M., … Ordomsky, V. V. (2022). TEMPO-Ru-BEA composite material for the selective oxidation of alcohols to aldehydes. ACS Catalysis, 12(15), 8925-8935. https://doi.org/10.1021/acscatal.2c01554
Multiple surface site three-dimensional structure determination of a supported molecular catalyst
Jabbour, R., Renom-Carrasco, M., Chan, K. W., Völker, L., Berruyer, P., Wang, Z., … Lesage, A. (2022). Multiple surface site three-dimensional structure determination of a supported molecular catalyst. Journal of the American Chemical Society, 144(23), 10270-10281. https://doi.org/10.1021/jacs.2c01013
Atom-by-atom synthesis of multiatom-supported catalytic clusters by liquid-phase atomic layer deposition
Le Monnier, B. P., Savereide, L., Kılıç, M., Schnyder, R., Mensi, M. D., Avalos, C. E., … Luterbacher, J. S. (2022). Atom-by-atom synthesis of multiatom-supported catalytic clusters by liquid-phase atomic layer deposition. ACS Sustainable Chemistry and Engineering, 10(11), 3455-3465. https://doi.org/10.1021/acssuschemeng.1c07056
Mechanistic insights into OC-COH coupling in CO<sub>2 </sub>electroreduction on fragmented copper
Yao, K., Li, J., Wang, H., Lu, R., Yang, X., Luo, M., … Liang, H. (2022). Mechanistic insights into OC-COH coupling in CO2 electroreduction on fragmented copper. Journal of the American Chemical Society, 144(31), 14005-14011. https://doi.org/10.1021/jacs.2c01044
Time-resolved study of thermal decomposition process of (NH<sub>4</sub>)<sub>2</sub>[PtCl<sub>6</sub>]: intermediates and Pt nucleation
Asanova, T. I., Fedorova, E. A., Asanov, I. P., Yusenko, K. V., Gerasimov, E. Y., La Fontaine, C., … Korenev, S. V. (2021). Time-resolved study of thermal decomposition process of (NH4)2[PtCl6]: intermediates and Pt nucleation. Vacuum, 194, 110590 (12 pp.). https://doi.org/10.1016/j.vacuum.2021.110590
 

Pages