Active Filters

  • (-) Beamlines = Super-XAS
  • (-) Publication Status ≠ In Press
  • (-) Keywords = nickel
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
In situ study of low-temperature dry reforming of methane over La<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> and LaNiO<sub>3</sub> mixed oxides
Ramon, A. P., Li, X., Clark, A. H., Safonova, O. V., Marcos, F. C., Assaf, E. M., … Assaf, J. M. (2022). In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Applied Catalysis B: Environmental, 315, 121528 (16 pp.). https://doi.org/10.1016/j.apcatb.2022.121528
Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO<sub>2</sub> methanation
Summa, P., Samojeden, B., Motak, M., Wierzbicki, D., Alxneit, I., Świerczek, K., & Da Costa, P. (2022). Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation. Catalysis Today, 384–386, 133-145. https://doi.org/10.1016/j.cattod.2021.05.004
Increased nickel exsolution from LaFe&lt;sub&gt;0.8&lt;/sub&gt;Ni&lt;sub&gt;0.2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; perovskite-derived CO&lt;sub&gt;2&lt;/sub&gt; methanation catalysts through strontium doping
Steiger, P., Kröcher, O., & Ferri, D. (2020). Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping. Applied Catalysis A: General, 590, 117328 (8 pp.). https://doi.org/10.1016/j.apcata.2019.117328
Nickel incorporation in perovskite-type metal oxides – implications on reducibility
Steiger, P., Alxneit, I., & Ferri, D. (2019). Nickel incorporation in perovskite-type metal oxides – implications on reducibility. Acta Materialia, 164, 568-576. https://doi.org/10.1016/j.actamat.2018.11.004
Segregation of nickel/iron bimetallic particles from lanthanum doped strontium titanates to improve sulfur stability of solid oxide fuel cell anodes
Steiger, P., Burnat, D., Kröcher, O., Heel, A., & Ferri, D. (2019). Segregation of nickel/iron bimetallic particles from lanthanum doped strontium titanates to improve sulfur stability of solid oxide fuel cell anodes. Catalysts, 9(4), 332 (16 pp.). https://doi.org/10.3390/catal9040332
Design of stable Ni/ZrO&lt;sub&gt;2&lt;/sub&gt; catalysts for dry reforming of methane
Lou, Y., Steib, M., Zhang, Q., Tiefenbacher, K., Horváth, A., Jentys, A., … Lercher, J. A. (2017). Design of stable Ni/ZrO2 catalysts for dry reforming of methane. Journal of Catalysis, 356, 147-156. https://doi.org/10.1016/j.jcat.2017.10.009
Enhanced activity in methane dry reforming by carbon dioxide induced metal-oxide interface restructuring of nickel/zirconia
Steib, M., Lou, Y., Jentys, A., & Lercher, J. A. (2017). Enhanced activity in methane dry reforming by carbon dioxide induced metal-oxide interface restructuring of nickel/zirconia. ChemCatChem, 9(20), 3809-3813. https://doi.org/10.1002/cctc.201700686
Photocatalyzed hydrogen evolution from water by a composite catalyst of NH&lt;sub&gt;2&lt;/sub&gt;-MIL-125(Ti) and surface nickel(II) species
Meyer, K., Bashir, S., Llorca, J., Idriss, H., Ranocchiari, M., & van Bokhoven, J. A. (2016). Photocatalyzed hydrogen evolution from water by a composite catalyst of NH2-MIL-125(Ti) and surface nickel(II) species. Chemistry: A European Journal, 22(39), 13894-13899. https://doi.org/10.1002/chem.201601988
Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation
Nassr, A. B. A. A., Sinev, I., Pohl, M. M., Grünert, W., & Bron, M. (2014). Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation. ACS Catalysis, 4(8), 2449-2462. https://doi.org/10.1021/cs401140g