Active Filters

  • (-) Facilities = SINQ
Search Results 1 - 20 of 2,077

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Improved water management for PEFC with interdigitated flow fields using modified gas diffusion layers
Manzi-Orezzoli, V., Siegwart, M., Cochet, M., Schmidt, T. J., & Boillat, P. (2020). Improved water management for PEFC with interdigitated flow fields using modified gas diffusion layers. Journal of the Electrochemical Society, 167(5), 054503 (8 pp.). https://doi.org/10.1149/2.0062005JES
High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power
Polatidis, E., Čapek, J., Arabi-Hashemi, A., Leinenbach, C., & Strobl, M. (2020). High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power. Scripta Materialia, 176, 53-57. https://doi.org/10.1016/j.scriptamat.2019.09.035
Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis
Alderete, N., Villagrán Zaccardi, Y., Snoeck, D., Van Belleghem, B., Van den Heede, P., Van Tittelboom, K., & De Belie, N. (2019). Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis. Cement and Concrete Research, 118, 57-68. https://doi.org/10.1016/j.cemconres.2019.02.011
Enhanced intrinsic saturation magnetization of Zn<sub>x</sub>Co<sub>1-<em>x</em></sub>Fe<sub>2</sub>O<sub>4</sub> nanocrystallites with metastable spinel inversion
Andersen, H. L., Granados-Miralles, C., Saura-Múzquiz, M., Stingaciu, M., Larsen, J., Søndergaard-Pedersen, F., … Christensen, M. (2019). Enhanced intrinsic saturation magnetization of ZnxCo1-xFe2O4 nanocrystallites with metastable spinel inversion. Materials Chemistry Frontiers, 3(4), 668-679. https://doi.org/10.1039/C9QM00012G
Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>
Barbero, N., Medarde, M., Shang, T., Sheptyakov, D., Landee, C. P., Mesot, J., … Shiroka, T. (2019). Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)2(ClO4)2. Physical Review Materials, 3(5), 053602 (10 pp.). https://doi.org/10.1103/PhysRevMaterials.3.053602
Local study of the insulating quantum kagome antiferromagnets YCu&lt;sub&gt;3&lt;/sub&gt;(OH)&lt;sub&gt;6&lt;/sub&gt;O&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;Cl&lt;sub&gt;3−&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;(&lt;em&gt;x &lt;/em&gt;= 0,1/3)
Barthélemy, Q., Puphal, P., Zoch, K. M., Krellner, C., Luetkens, H., Baines, C., … Bert, F. (2019). Local study of the insulating quantum kagome antiferromagnets YCu3(OH)6OxCl3−x(x = 0,1/3). Physical Review Materials, 3(7), 074401 (9 pp.). https://doi.org/10.1103/PhysRevMaterials.3.074401
A versatile, ultra-low background magnet for neutron scattering at SINQ
Bartkowiak, M., Zolliker, M., Ma, W., & van den Brandt, B. (2019). A versatile, ultra-low background magnet for neutron scattering at SINQ. Journal of Neutron Research, 21(1-2), 59-64. https://doi.org/10.3233/JNR-190107
Surface phonons of lithium ion battery active materials
Benedek, P., Yazdani, N., Chen, H., Wenzler, N., Juranyi, F., Månsson, M., … Wood, V. C. (2019). Surface phonons of lithium ion battery active materials. Sustainable Energy and Fuels, 3(2), 508-513. https://doi.org/10.1039/C8SE00389K
Ion-induced formation of nanocrystalline cellulose colloidal glasses containing nematic domains
Bertsch, P., Sánchez-Ferrer, A., Bagnani, M., Isabettini, S., Kohlbrecher, J., Mezzenga, R., & Fischer, P. (2019). Ion-induced formation of nanocrystalline cellulose colloidal glasses containing nematic domains. Langmuir, 35(11), 4117-4124. https://doi.org/10.1021/acs.langmuir.9b00281
Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces
Bertsch, P., Thoma, A., Bergfreund, J., Geue, T., & Fischer, P. (2019). Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces. Soft Matter, 15(31), 6362-6368. https://doi.org/10.1039/C9SM01112A
Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials
Billaud, J., Sheptyakov, D., Sallard, S., Leanza, D., Talianker, M., Grinblat, J., … Villevieille, C. (2019). Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A, 7(25), 15215-15224. https://doi.org/10.1039/C9TA00399A
Extending the range of controlling protein adsorption via subsurface architecture
Bülbül, E., Rupper, P., Geue, T., Bernard, L., Heuberger, M., & Hegemann, D. (2019). Extending the range of controlling protein adsorption via subsurface architecture. ACS Applied Materials and Interfaces, 11(45), 42760-42772. https://doi.org/10.1021/acsami.9b14584
Implementation and assessment of the black body bias correction in quantitative neutron imaging
Carminati, C., Boillat, P., Schmid, F., Vontobel, P., Hovind, J., Morgano, M., … Kaestner, A. (2019). Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS One, 14(1), e0210300 (24 pp.). https://doi.org/10.1371/journal.pone.0210300
KipTool, a general purpose processing tool for neutron imaging data
Carminati, C., Strobl, M., & Kaestner, A. (2019). KipTool, a general purpose processing tool for neutron imaging data. SoftwareX, 10, 100279 (7 pp.). https://doi.org/10.1016/j.softx.2019.100279
Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography
Cho, J. I. S., Neville, T. P., Trogadas, P., Meyer, Q., Wu, Y., Ziesche, R., … Coppens, M. O. (2019). Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy, 170, 14-21. https://doi.org/10.1016/j.energy.2018.12.143
Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging
Crha, J., Vila-Comamala, J., Lehmann, E., David, C., & Trtik, P. (2019). Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging. MethodsX, 6, 107-114. https://doi.org/10.1016/j.mex.2018.12.005
Borosilicate glass layers on Mycenaean glass: surface alterations by glass-borax-gold interactions
Drünert, F., Lind, F., Vontobel, P., Kamitsos, E. I., Wondraczek, L., & Möncke, D. (2019). Borosilicate glass layers on Mycenaean glass: surface alterations by glass-borax-gold interactions. Journal of Non-Crystalline Solids: X, 3, 100020 (7 pp.). https://doi.org/10.1016/j.nocx.2019.100020
Crystal structure of Mo-substituted lanthanum tungstate La&lt;sub&gt;5.4&lt;/sub&gt;W&lt;sub&gt;1-&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt;Mo&lt;em&gt;y&lt;/em&gt;O&lt;sub&gt;12-&lt;em&gt;δ&lt;/em&gt;&lt;/sub&gt; (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffra
Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2019). Crystal structure of Mo-substituted lanthanum tungstate La5.4W1-yMoyO12-δ (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffraction. Journal of Applied Crystallography, 52(5), 1043-1053. https://doi.org/10.1107/S1600576719009385
Tomonaga-Luttinger liquid spin dynamics in the quasi-one-dimensional ising-like antiferromagnet BaCo&lt;sub&gt;2&lt;/sub&gt;V&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;8&lt;/sub&gt;
Faure, Q., Takayoshi, S., Simonet, V., Grenier, B., Månsson, M., White, J. S., … Petit, S. (2019). Tomonaga-Luttinger liquid spin dynamics in the quasi-one-dimensional ising-like antiferromagnet BaCo2V2O8. Physical Review Letters, 123(2), 027204 (7 pp.). https://doi.org/10.1103/PhysRevLett.123.027204
Multiple Coulomb phase in the fluoride pyrochlore CsNiCrF<sub>6</sub>
Fennell, T., Harris, M. J., Calder, S., Ruminy, M., Boehm, M., Steffens, P., … Bramwell, S. T. (2019). Multiple Coulomb phase in the fluoride pyrochlore CsNiCrF6. Nature Physics, 15(1), 60-66. https://doi.org/10.1038/s41567-018-0309-3
 

Pages